Chaotic difference equations: generic aspects
HTML articles powered by AMS MathViewer
- by Hans Willi Siegberg
- Trans. Amer. Math. Soc. 279 (1983), 205-213
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704610-8
- PDF | Request permission
Abstract:
It is shown that in the set of all continuous selfmaps of a compact acyclic polyhedron (i.e. the homology groups of the space vanish in all dimensions $> 0$) the chaotic maps form a dense set. The notion of chaos used here is that of Li and Yorke. If this notion is slightly weakened ("almost chaotic") the density result can be improved by the theorem that the set of almost chaotic (continuous) selfmaps of a compact acyclic polyhedron $P$ contains a residual subset of the space of all continuous selfmaps of $P$. Moreover, the topological entropy of such a generic almost chaotic map is shown to be infinite. The basic ingredients of the proofs are from fixed point index theory.References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI 10.1090/S0002-9947-1965-0175106-9 H. Amann, Lectures on some fixed point theorems, Monograf. Mat., Inst. Mat. Pura Apl., Rio de Janeiro, 1974.
- Louis Block, Stability of periodic orbits in the theorem of Šarkovskii, Proc. Amer. Math. Soc. 81 (1981), no. 2, 333–336. MR 593484, DOI 10.1090/S0002-9939-1981-0593484-8
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Rufus Bowen and John Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), no. 4, 337–342. MR 431282, DOI 10.1016/0040-9383(76)90026-4
- Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR 0283793
- G. J. Butler and G. Pianigiani, Periodic points and chaotic functions in the unit interval, Bull. Austral. Math. Soc. 18 (1978), no. 2, 255–265. MR 494303, DOI 10.1017/S0004972700008066
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116
- Günther Eisenack and Christian Fenske, Fixpunkttheorie, Bibliographisches Institut, Mannheim, 1978 (German). MR 516947
- Heinz Hopf, Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929), no. 1, 493–524 (German). MR 1545024, DOI 10.1007/BF01180550
- Peter E. Kloeden, Chaotic difference equations are dense, Bull. Austral. Math. Soc. 15 (1976), no. 3, 371–379. MR 432829, DOI 10.1017/S0004972700022802
- Andrzej Lasota and James A. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 3, 233–238 (English, with Russian summary). MR 453977
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- Frederick R. Marotto, Snap-back repellers imply chaos in $\textbf {R}^{n}$, J. Math. Anal. Appl. 63 (1978), no. 1, 199–223. MR 501175, DOI 10.1016/0022-247X(78)90115-4
- O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž. 16 (1964), 61–71 (Russian, with English summary). MR 0159905
- Michael Shub, Stabilité globale des systèmes dynamiques, Astérisque, vol. 56, Société Mathématique de France, Paris, 1978 (French). With an English preface and summary. MR 513592 H. W. Siegberg, Zur komplexen Dynamik iterierter Abbildungen, Dissertation, University of Bremen, 1982.
- P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), no. 3, 237–248. MR 445556
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 205-213
- MSC: Primary 58F14; Secondary 58F08, 58F12
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704610-8
- MathSciNet review: 704610