Elementary first integrals of differential equations
HTML articles powered by AMS MathViewer
- by M. J. Prelle and M. F. Singer
- Trans. Amer. Math. Soc. 279 (1983), 215-229
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704611-X
- PDF | Request permission
Abstract:
We show that if a system of differential equations has an elementary first integral (i.e. a first integral expressible in terms of exponentials, logarithms and algebraic functions) then it must have a first integral of a very simple form. This unifies and extends results of Mordukhai-Boltovski, Ritt and others and leads to a partial algorithm for finding such integrals.References
- J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979 (French). MR 537038 C. Mack, Integration of affine forms over elementary functions, Computer Science Department, University of Utah, Technical Report, VCP-39, 1976. D. Mordukhai-Boltovski, Researches on the integration in finite terms of differential equations of the first order, Communications de la Société Mathématique de Kharkov, X (1906-1909), pp. 34-64, 231-269. (Russian) Translation of pp. 34-64, B. Korenblum and M. J. Prelle, SIGSAM Bulletin, Vol. 15, No. 2, May 1981, pp. 20-32.
- Joel Moses and Richard Zippel, An extension of Liouville’s theorem, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 426–430. MR 575703 Oeuvres de Paul Painlevé, Vols. I and II, Editions CNRS, Paris, 1972. Oeuvres de Henri Pointuré, Vol. III, Gauthier-Villars, Paris, 1934. M. J. Prelle, Thesis, Rensselaer Polytechnic Institute, 1982.
- Robert H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc. 139 (1969), 167–189. MR 237477, DOI 10.1090/S0002-9947-1969-0237477-8
- Robert H. Risch, The solution of the problem of integration in finite terms, Bull. Amer. Math. Soc. 76 (1970), 605–608. MR 269635, DOI 10.1090/S0002-9904-1970-12454-5
- J. F. Ritt, On the integrals of elementary functions, Trans. Amer. Math. Soc. 25 (1923), no. 2, 211–222. MR 1501240, DOI 10.1090/S0002-9947-1923-1501240-7 —, Integration in finite terms. Liouville’s theory of elementary methods, Columbia Univ. Press, New York, 1948.
- Maxwell Rosenlicht, On Liouville’s theory of elementary functions, Pacific J. Math. 65 (1976), no. 2, 485–492. MR 447199
- Maxwell Rosenlicht and Michael Singer, On elementary, generalized elementary, and Liouvillian extension fields, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 329–342. MR 0466093
- Michael F. Singer, Elementary solutions of differential equations, Pacific J. Math. 59 (1975), no. 2, 535–547. MR 389874
- Michael F. Singer, Functions satisfying elementary relations, Trans. Amer. Math. Soc. 227 (1977), 185–206. MR 568865, DOI 10.1090/S0002-9947-1977-0568865-2
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 215-229
- MSC: Primary 12H05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704611-X
- MathSciNet review: 704611