On compact cohomology theories and Pontrjagin duality
HTML articles powered by AMS MathViewer
 by Keith Johnson PDF
 Trans. Amer. Math. Soc. 279 (1983), 237247 Request permission
Abstract:
Cohomology theories taking values in the category of topological groups are examined and a representation theorem is established for those whose coefficient groups are compact and locally euclidean. A method for constructing unstable homology operations is developed using this theorem, and application is made to the case of complex $K$theory.References

J. F. Adams, Stable homotopy and generalized homology, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, Ill., 1970.
D. W. Anderson, A universal coefficient theorem for $K$theory, unpublished seminar notes, MIT, 1970.
 M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, SpringerVerlag, BerlinNew York, 1969. MR 0245577
 Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467–484. MR 138104, DOI 10.2307/1970209
 Edgar H. Brown Jr. and Michael Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976), no. 1, 1–27. MR 405403, DOI 10.2307/2373610
 Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
 László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New YorkLondon, 1970. MR 0255673
 Peter Hilton, Putting coefficients into a cohomology theory. I, Nederl. Akad. Wetensch. Proc. Ser. A 73=Indag. Math. 32 (1970), 196–209. MR 0266197
 C. R. F. Maunder, Cohomology operations and duality, Proc. Cambridge Philos. Soc. 64 (1968), 15–30. MR 222888, DOI 10.1017/s030500410004250x
 Sidney A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, CambridgeNew YorkMelbourne, 1977. MR 0442141
 Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, SpringerVerlag, New YorkBerlin, 1971. Third printing corrected. MR 0342978
 E. H. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338–378. MR 107862, DOI 10.2307/1970107
 N. E. Steenrod, Cohomology operations, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 165–185. MR 0098367
 Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79. MR 442930, DOI 10.2307/1970841
 Rainer Vogt, Boardman’s stable homotopy category, Lecture Notes Series, No. 21, Aarhus Universitet, Matematisk Institut, Aarhus, 1970. MR 0275431
 Zenichi Yosimura, Universal coefficient sequences for cohomology theories of CWspectra. II, Osaka Math. J. 16 (1979), no. 1, 201–217. MR 527026
 S. Zdravkovska, Topological objects in homotopy theory, Glasnik Mat. Ser. III 12(32) (1977), no. 1, 175–190 (English, with Macedonian summary). MR 461488
Additional Information
 © Copyright 1983 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 279 (1983), 237247
 MSC: Primary 55N20; Secondary 55N15, 55S25
 DOI: https://doi.org/10.1090/S00029947198307046133
 MathSciNet review: 704613