## Hamburger-Noether expansions over rings

HTML articles powered by AMS MathViewer

- by Antonio Campillo PDF
- Trans. Amer. Math. Soc.
**279**(1983), 377-388 Request permission

## Abstract:

We study Hamburger-Noether expansions over rings, obtaining some applications to equisingular deformation theory and the moduli problem of plane curve singularities, and construct a universal equation for a given equisingularity class.## References

- Antonio Campillo,
*Algebroid curves in positive characteristic*, Lecture Notes in Mathematics, vol. 813, Springer, Berlin, 1980. MR**584440** - Augusto Nobile,
*Equisingular deformations of Puiseux expansions*, Trans. Amer. Math. Soc.**214**(1975), 113–135. MR**414560**, DOI 10.1090/S0002-9947-1975-0414560-8 - A. Nobile,
*On equisingular deformations of plane curve singularities*, Illinois J. Math.**22**(1978), no. 3, 476–498. MR**491714** - Jonathan M. Wahl,
*Equisingular deformations of plane algebroid curves*, Trans. Amer. Math. Soc.**193**(1974), 143–170. MR**419439**, DOI 10.1090/S0002-9947-1974-0419439-2
O. Zariski, - Oscar Zariski,
*Le problème des modules pour les branches planes*, École Polytechnique, Paris, 1973 (French). Cours donné au Centre de Mathématiques de l’École Polytechnique, Paris, Octobre-Novembre 1973; Rédigé par François Kmety et Michel Merle; Avec un Appendice de Bernard Teissier et une réimpression de “Characterization of plane algebroid curves whose module of differentials has maximum torsion” (Proc. Nat. Acad. Sci. U.S.A. 56 (1966), no. 3, 781–786), par Oscar Zariski. MR**0414561** - Oscar Zariski and Pierre Samuel,
*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0120249**

*Studies in equisingularity*, Amer. J. Math.

**87**(1965), 507-536, 972-1006.

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**279**(1983), 377-388 - MSC: Primary 14B07; Secondary 14H20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704621-2
- MathSciNet review: 704621