Group rings which are Azumaya algebras
HTML articles powered by AMS MathViewer
- by F. R. DeMeyer and G. J. Janusz
- Trans. Amer. Math. Soc. 279 (1983), 389-395
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704622-4
- PDF | Request permission
Abstract:
The group ring $RG$ of a group $G$ over a ring $R$ (with identity $1(R)$) is a separable algebra over its center if and only if the following conditions hold: (a) $R$ is a separable algebra over its center; (b) the center of $G$ has finite index in $G$: (c) the commutator subgroup $Gā$ of $G$ has finite order $m$ and $m1(R)$ is invertible in $R$.References
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367ā409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 0347959
- Kiiti Morita, On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1951), 177ā194. MR 49909
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593ā632. MR 376746, DOI 10.1112/plms/s3-29.4.593
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 389-395
- MSC: Primary 16A16; Secondary 16A26, 16A27
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704622-4
- MathSciNet review: 704622