On the location of zeros of oscillatory solution
HTML articles powered by AMS MathViewer
- by H. Gingold
- Trans. Amer. Math. Soc. 279 (1983), 471-496
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709564-6
- PDF | Request permission
Abstract:
The location of zeros of solutions of second order singular differential equations is provided by a new asymptotic decomposition formula. The approximate location of zeros is provided with high accuracy error estimates in the neighbourhood of the point at infinity. The same asymptotic formula suggested is applicable to the neighbourhood of most types of singularities as well as to the neighbourhoods of regular points.References
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338 H. Gingold, Asymptotic decompositions and turning points (in preparation).
- H. Gingold, Uniqueness criteria for second order nonlinear boundary value problems, J. Math. Anal. Appl. 73 (1980), no. 2, 392–410. MR 563991, DOI 10.1016/0022-247X(80)90286-3
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Einar Hille, Lectures on ordinary differential equations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0249698 K. Kreith, Oscillation theory, Lecture Notes in Math., Vol. 324, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
- Vadim Komkov, On the location of zeros of second-order differential equations, Proc. Amer. Math. Soc. 35 (1972), 217–222. MR 298128, DOI 10.1090/S0002-9939-1972-0298128-5
- Walter Leighton, Comparison theorems for linear differential equations of second order, Proc. Amer. Math. Soc. 13 (1962), 603–610. MR 140759, DOI 10.1090/S0002-9939-1962-0140759-0
- J. W. Macki and G. Butler, Oscillation and comparison theorems for second order linear differential equations with integrable coefficients, Proceedings of the C. Carathéodory International Symposium (Athens, 1973) Greek Math. Soc., Athens, 1974, pp. 409–413. MR 0473338
- Zeev Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445. MR 87816, DOI 10.1090/S0002-9947-1957-0087816-8
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- Yasutaka Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, Vol. 18, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0486867
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188
- D. Willett, Classification of second order linear differential equations with respect to oscillation, Advances in Math. 3 (1969), 594–623. MR 280800, DOI 10.1016/0001-8708(69)90011-5 A. Wiman, Uber die reellen Losungen der linearen Differentialgleichungen zweiter Ordnung, Ark. Mat. Astr. Fry. 12 (1917).
- E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Band I. Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Monographien und Lehrbüchern. Band 18, J. W. Edwards, Ann Arbor, Mich., 1945 (German). 2d ed; Akademische Verlagsgesellschaft, Leipzig, 1943. MR 0025036
- Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57–61. MR 32065
- Miloš Ráb, Kriterien für die Oszillation der Lösungen der Differentialgleichung $[p(x)y^{\prime }]^\prime +q(x)y=0$, Časopis Pěst. Mat. 84 (1959), 335–370; erratum: 85 (1959), 91 (German, with Czech and Russian summaries). MR 0114964
- James S. W. Wong, A note on second order nonlinear oscillation, SIAM Rev. 10 (1968), 88–91. MR 227525, DOI 10.1137/1010007
- James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197–215. MR 251305, DOI 10.1090/S0002-9947-1969-0251305-6
- D. Willett, Classification of second order linear differential equations with respect to oscillation, Advances in Math. 3 (1969), 594–623. MR 280800, DOI 10.1016/0001-8708(69)90011-5
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 471-496
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709564-6
- MathSciNet review: 709564