The structure of $\omega _{1}$-separable groups
HTML articles powered by AMS MathViewer
- by Paul C. Eklof
- Trans. Amer. Math. Soc. 279 (1983), 497-523
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709565-8
- PDF | Request permission
Abstract:
A classification theorem is proved for ${\omega _1}$-separable ${\omega _1}$-free abelian groups of cardinality ${\omega _1}$ assuming Martin’s Axiom $(\text {MA})$ and ${2^{\aleph _0}} > {\aleph _1}$. As a consequence, several structural results about direct sum decompositions of ${\omega _1}$-separable groups are proved. These results are proved independent of $\text {ZFC}$, and, in addition, another structural property is proved undecidable in ${\text {ZFC}} + {\text {MA}} + {2^{\aleph _0}} > {\aleph _1}$. The problem of classifying these groups in a model of ${2^{\aleph _0}} = {\aleph _1}$ is also investigated.References
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002 —, Proper forcing, Handbook of Set Theoretic Topology (to appear).
- Keith J. Devlin, Iterated Souslin forcing, the principles $\diamondsuit (E)$ and a generalisation of the axiom SAD, Israel J. Math. 31 (1978), no. 3-4, 368–382. MR 516158, DOI 10.1007/BF02761502
- Keith J. Devlin and Saharon Shelah, A weak version of $\diamondsuit$ which follows from $2^{\aleph _{0}}<2^{\aleph _{1}}$, Israel J. Math. 29 (1978), no. 2-3, 239–247. MR 469756, DOI 10.1007/BF02762012
- Paul C. Eklof, Set-theoretic methods in homological algebra and abelian groups, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 69, Presses de l’Université de Montréal, Montreal, Que., 1980. MR 565449
- Paul C. Eklof and Martin Huber, On the rank of Ext, Math. Z. 174 (1980), no. 2, 159–185. MR 592913, DOI 10.1007/BF01293536
- Paul C. Eklof and Alan H. Mekler, On constructing indecomposable groups in $L$, J. Algebra 49 (1977), no. 1, 96–103. MR 457197, DOI 10.1016/0021-8693(77)90269-1 P. Eklof, A. Mekler and S. Shelah, Almost disjoint groups, Israel J. Math. (to appear).
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Phillip Griffith, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279–284. MR 245613, DOI 10.2140/pjm.1969.29.279 —, Infinite abelian groups, Univ. of Chicago Press, Chicago, Ill., 1970. W. Hodges, Seminar on proper forcing, (lecture notes).
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Alan H. Mekler, How to construct almost free groups, Canadian J. Math. 32 (1980), no. 5, 1206–1228. MR 596105, DOI 10.4153/CJM-1980-090-1
- Alan H. Mekler, On Shelah’s Whitehead groups and CH, Rocky Mountain J. Math. 12 (1982), no. 2, 271–278. MR 661736, DOI 10.1216/RMJ-1982-12-2-271
- Saharon Shelah, Whitehead groups may be not free, even assuming CH. I, Israel J. Math. 28 (1977), no. 3, 193–204. MR 469757, DOI 10.1007/BF02759809
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2
- S. Shelah, On endo-rigid, strongly $\aleph _{1}$-free abelian groups in $\aleph _{1}$, Israel J. Math. 40 (1981), no. 3-4, 291–295 (1982). MR 654584, DOI 10.1007/BF02761369
- R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245. MR 294139, DOI 10.2307/1970860
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 497-523
- MSC: Primary 03E35; Secondary 03E50, 20A15, 20K20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709565-8
- MathSciNet review: 709565