Mean values of subsolutions of elliptic and parabolic equations
HTML articles powered by AMS MathViewer
- by William P. Ziemer
- Trans. Amer. Math. Soc. 279 (1983), 555-568
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709568-3
- PDF | Request permission
Abstract:
Integral averages of weak subsolutions (and supersolutions) in ${R^n}$ of quasilinear elliptic and parabolic equations are investigated. The important feature is that these integral averages are defined in terms of measures that reflect interesting geometric phenomena. Harnack type inequalities are established in terms of these integral averages.References
- David R. Adams and Norman G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972/73), 169–197. MR 316724, DOI 10.1512/iumj.1972.22.22015
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Wendell H. Fleming, Functions whose partial derivatives are measures, Illinois J. Math. 4 (1960), 452–478. MR 130338
- Herbert Federer and William P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972/73), 139–158. MR 435361, DOI 10.1512/iumj.1972.22.22013
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- Ronald Gariepy and William P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), no. 1, 25–39. MR 492836, DOI 10.1007/BF00280825
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Norman G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Rational Mech. Anal. 68 (1978), no. 2, 113–120. MR 493308, DOI 10.1007/BF00281405
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Norman G. Meyers and William P. Ziemer, Integral inequalities of PoincarĂ© and Wirtinger type for BV functions, Amer. J. Math. 99 (1977), no. 6, 1345–1360. MR 507433, DOI 10.2307/2374028 J. SerrĂn, Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964), 247-302.
- Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, DOI 10.1002/cpa.3160200406
- Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. MR 226168, DOI 10.1002/cpa.3160210302
- William P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. Amer. Math. Soc. 271 (1982), no. 2, 733–748. MR 654859, DOI 10.1090/S0002-9947-1982-0654859-7
- William P. Ziemer, Behavior at the boundary of solutions of quasilinear parabolic equations, J. Differential Equations 35 (1980), no. 3, 291–305. MR 563383, DOI 10.1016/0022-0396(80)90030-3
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 555-568
- MSC: Primary 35D99; Secondary 35B99, 35J60, 35K55
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709568-3
- MathSciNet review: 709568