Espaces $l^{p}$ dans les sous-espaces de $L^{1}$
HTML articles powered by AMS MathViewer
- by S. Guerre and M. Levy
- Trans. Amer. Math. Soc. 279 (1983), 611-616
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709571-3
- PDF | Request permission
Abstract:
It is shown that every subspace $E$ of ${L^1}$ contains a subspace isomorphic to ${l^{p(E)}}$, where $p(E)$ is the upper bound of the set of real $p$’s such that $E$ is of type $p$-Rademacher. As $p(E)$ is also the upper bound of the set of real $p$’s such that $E$ embeds into ${L^p}$, this result answers a question of H. P. Rosenthal. The proof uses the theory of stable Banach spaces developed by J. L. Krivine and B. Maurey.References
- David J. Aldous, Subspaces of $L^{1}$, via random measures, Trans. Amer. Math. Soc. 267 (1981), no. 2, 445–463. MR 626483, DOI 10.1090/S0002-9947-1981-0626483-2
- D. Dacunha-Castelle and J. L. Krivine, Applications des ultraproduits à l’étude des espaces et des algèbres de Banach, Studia Math. 41 (1972), 315–334 (French). MR 305035, DOI 10.4064/sm-41-3-315-334
- J.-L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), no. 4, 273–295 (French, with English summary). MR 636897, DOI 10.1007/BF02761674
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Haskell P. Rosenthal, The Banach spaces $C(K)$ and $L^{p}(\mu )$, Bull. Amer. Math. Soc. 81 (1975), no. 5, 763–781. MR 380381, DOI 10.1090/S0002-9904-1975-13824-9
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
- J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York-Heidelberg, 1975. MR 0461107, DOI 10.1007/978-3-642-66037-5
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 611-616
- MSC: Primary 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709571-3
- MathSciNet review: 709571