A restriction theorem for semisimple Lie groups of rank one
HTML articles powered by AMS MathViewer
- by Juan A. Tirao
- Trans. Amer. Math. Soc. 279 (1983), 651-660
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709574-9
- PDF | Request permission
Abstract:
Let ${\mathfrak {g}_{\mathbf {R}}} = {\mathfrak {f}_{\mathbf {R}}} + {\mathfrak {p}_{\mathbf {R}}}$ be a Cartan decomposition of a real semisimple Lie algebra ${\mathfrak {g}_{\mathbf {R}}}$ and let $\mathfrak {g} = \mathfrak {f} + \mathfrak {p}$ be the corresponding complexification. Also let ${\mathfrak {a}_{\mathbf {R}}}$ be a maximal abelian subspace of ${\mathfrak {p}_{\mathbf {R}}}$ and let $\mathfrak {a}$ be the complex subspace of $\mathfrak {p}$ generated by ${\mathfrak {a}_{\mathbf {R}}}$. We assume $\dim {\mathfrak {a}_{\mathbf {R}}} = 1$. Now let $G$ be the adjoint group of $\mathfrak {g}$ and let $K$ be the analytic subgroup of $G$ with Lie algebra ${\text {ad}}_\mathfrak {g}(\mathfrak {f})$. If $S^\prime (\mathfrak {g})$ denotes the ring of all polynomial functions on $\mathfrak {g}$ then clearly $S^\prime (\mathfrak {g})$ is a $G$-module and a fortiori a $K$-module. In this paper, we determine the image of the subring $S^\prime {(\mathfrak {g})^K}$ of $K$-invariants in $S^\prime (\mathfrak {g})$ under the restriction map $f \mapsto f{|_{\mathfrak {f} + \mathfrak {a}}}(f \in S^\prime {(\mathfrak {g})^K})$.References
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 231–329. MR 0399361
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Bertram Kostant and Juan Tirao, On the structure of certain subalgebras of a universal enveloping algebra, Trans. Amer. Math. Soc. 218 (1976), 133–154. MR 404367, DOI 10.1090/S0002-9947-1976-0404367-0
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1–44. MR 346093, DOI 10.1090/S0002-9947-1973-0346093-X
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 651-660
- MSC: Primary 22E46
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709574-9
- MathSciNet review: 709574