## Some applications of direct integral decompositions of $W^{\ast }$-algebras

HTML articles powered by AMS MathViewer

- by Edward Sarian
- Trans. Amer. Math. Soc.
**279**(1983), 677-689 - DOI: https://doi.org/10.1090/S0002-9947-1983-0709576-2
- PDF | Request permission

## Abstract:

Let $\mathcal {A}$ be a ${W^{\ast }}$-algebra and let $A \in \mathcal {A}$. $\mathcal {K}(\mathcal {A})$ and $C(A)$ represent certain convex subsets of $\mathcal {A}$. We prove the following via direct integral theory: (1) If $\mathcal {A}$ is of type ${{\text {I}}_\infty }$, ${\text {II}}_\infty$, or III, then $C(A) = \{ 0\}$ iff ${\text {A}} \in \mathcal {K}(\mathcal {A})$. (2) If $\mathcal {A}$ is of type I or II, then $\mathcal {K}(\mathcal {A})$ is strongly dense in $\mathcal {A}$. (3) If $\mathcal {A}$ is of type ${{\text {I}}_\infty }$, ${\text {II}}_\infty$, or III and $\mathcal {B}$ is a ${W^{\ast }}$-subalgebra of $\mathcal {A}$, we give sufficient conditions for a Schwartz map $P$ of $\mathcal {A}$ into $\mathcal {B}$ to annihilate $\mathcal {K}(\mathcal {A})$. Several preliminary lemmas that are useful for direct integral theory are also proved.## References

- John B. Conway,
*The numerical range and a certain convex set in an infinite factor.*, J. Functional Analysis**5**(1970), 428–435. MR**0262839**, DOI 10.1016/0022-1236(70)90019-4 - Andre de Korvin,
*Stable maps and Schwartz maps*, Trans. Amer. Math. Soc.**148**(1970), 283–291. MR**264412**, DOI 10.1090/S0002-9947-1970-0264412-7 - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR**0188745** - J. T. Schwartz,
*$W^{\ast }$-algebras*, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR**0232221**
J. von Neumann. - Paul Willig,
*Trace norms, global properties, and direct integral decompositions of $W^*$-algebras*, Comm. Pure Appl. Math.**22**(1969), 839–862. MR**270170**, DOI 10.1002/cpa.3160220607 - Paul Willig,
*Property $P$ and direct integral decomposition of $W^*$-algebras*, Proc. Amer. Math. Soc.**29**(1971), 494–498. MR**279600**, DOI 10.1090/S0002-9939-1971-0279600-X

*On rings of operators*, Reduction theory, Collected Works, Vol. 3, Pergamon Press, New York, 1961, pp. 400-484.

## Bibliographic Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**279**(1983), 677-689 - MSC: Primary 46L45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709576-2
- MathSciNet review: 709576