Some applications of direct integral decompositions of $W^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Edward Sarian
- Trans. Amer. Math. Soc. 279 (1983), 677-689
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709576-2
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ be a ${W^{\ast }}$-algebra and let $A \in \mathcal {A}$. $\mathcal {K}(\mathcal {A})$ and $C(A)$ represent certain convex subsets of $\mathcal {A}$. We prove the following via direct integral theory: (1) If $\mathcal {A}$ is of type ${{\text {I}}_\infty }$, ${\text {II}}_\infty$, or III, then $C(A) = \{ 0\}$ iff ${\text {A}} \in \mathcal {K}(\mathcal {A})$. (2) If $\mathcal {A}$ is of type I or II, then $\mathcal {K}(\mathcal {A})$ is strongly dense in $\mathcal {A}$. (3) If $\mathcal {A}$ is of type ${{\text {I}}_\infty }$, ${\text {II}}_\infty$, or III and $\mathcal {B}$ is a ${W^{\ast }}$-subalgebra of $\mathcal {A}$, we give sufficient conditions for a Schwartz map $P$ of $\mathcal {A}$ into $\mathcal {B}$ to annihilate $\mathcal {K}(\mathcal {A})$. Several preliminary lemmas that are useful for direct integral theory are also proved.References
- John B. Conway, The numerical range and a certain convex set in an infinite factor. , J. Functional Analysis 5 (1970), 428–435. MR 0262839, DOI 10.1016/0022-1236(70)90019-4
- Andre de Korvin, Stable maps and Schwartz maps, Trans. Amer. Math. Soc. 148 (1970), 283–291. MR 264412, DOI 10.1090/S0002-9947-1970-0264412-7
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221 J. von Neumann. On rings of operators, Reduction theory, Collected Works, Vol. 3, Pergamon Press, New York, 1961, pp. 400-484.
- Paul Willig, Trace norms, global properties, and direct integral decompositions of $W^*$-algebras, Comm. Pure Appl. Math. 22 (1969), 839–862. MR 270170, DOI 10.1002/cpa.3160220607
- Paul Willig, Property $P$ and direct integral decomposition of $W^*$-algebras, Proc. Amer. Math. Soc. 29 (1971), 494–498. MR 279600, DOI 10.1090/S0002-9939-1971-0279600-X
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 677-689
- MSC: Primary 46L45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709576-2
- MathSciNet review: 709576