Nonimmersions and nonembeddings of quaternionic spherical space forms
HTML articles powered by AMS MathViewer
- by Teiichi Kobayashi
- Trans. Amer. Math. Soc. 279 (1983), 723-728
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709579-8
- PDF | Request permission
Abstract:
We determine the orders of the canonical elements in $KO$-rings of quaternionic spherical space forms ${S^{4n + 3}}/{Q_k}$ and apply them to prove the nonexistence theorems of immersions and embeddings of ${S^{4n + 3}}/{Q_k}$ in Euclidean spaces.References
- M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125–132. MR 145549, DOI 10.1016/0040-9383(65)90020-0
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Kensô Fujii, On the $K$-ring of $S^{4n+3}/H_{m}$, Hiroshima Math. J. 3 (1973), 251–265. MR 334184
- Kensô Fujii, On the $K\textrm {O}$-ring of $S^{4n+3}/H_{m}$, Hiroshima Math. J. 4 (1974), 459–475. MR 365608
- N. Mahammed, R. Piccinini, and U. Suter, Some applications of topological $K$-theory, Notas de Matemática [Mathematical Notes], vol. 74, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 592956 T. Mormann, Topologie Sphärischer Raumformen, Dissertation, Univ. Dortmund, 1978.
- Hideaki Ōshima, On stable homotopy types of some stunted spaces, Publ. Res. Inst. Math. Sci. 11 (1975/76), no. 2, 497–521. MR 0464221, DOI 10.2977/prims/1195191474
- David Pitt, Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. (3) 26 (1973), 1–18. MR 326755, DOI 10.1112/plms/s3-26.1.1
- R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685–697. MR 172303, DOI 10.2307/2373152
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 723-728
- MSC: Primary 57R42; Secondary 55N15, 55S25, 57R40
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709579-8
- MathSciNet review: 709579