Invariant subspaces on Riemann surfaces of Parreau-Widom type
HTML articles powered by AMS MathViewer
- by Mikihiro Hayashi
- Trans. Amer. Math. Soc. 279 (1983), 737-757
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709581-6
- PDF | Request permission
Abstract:
In this paper we generalize Beurling’s invariant subspace theorem to the Hardy classes on a Riemann surface with infinite handles. The problem is to classify all closed ($\text {weak}^{\ast }$ closed, if $p = \infty$) ${H^\infty }(d\chi )$-submodules, say $\mathfrak {m}$, of ${L^p}(d\chi )$, $1 \leqslant p \leqslant \infty$, where $d\chi$ is the harmonic measure on the Martin boundary of a Riemann surface $R$, and ${H^\infty }(d\chi )$ is the set of boundary functions of all bounded analytic functions on $R$. Our main result is stated roughly as follows. Let $R$ be of Parreau-Widom type, that is, the space ${H^\infty }(R,\gamma )$ of bounded analytic sections contains a nonzero element for every complex flat line bundle $\gamma \in \pi {(R)^{\ast }}$. We may assume, without loss of generality, that the Green’s function of $R$ vanishes at the infinity. Set ${m^\infty }(\gamma ) = \sup \{ |f({\mathbf {O}})|:f \in {H^\infty }(R,\gamma ),|f| \leqslant 1\}$ for a fixed point ${\mathbf {O}}$ of $R$. Then, a necessary and sufficient condition in order that every such an $\mathfrak {m}$ takes either the form $\mathfrak {m} = {C_E}{L^p}(d\chi )$, where ${C_E}$ is the characteristic function of a set $E$, or the form $\mathfrak {m} = q{H^p}(d\chi ,\gamma )$, where $|q| = 1$ a.e. and $\gamma$ is some element of $\pi {(R)^{\ast }}$ is that ${m^\infty }(\gamma )$ is continuous for the variable $\gamma \in \pi {(R)^{\ast }}$.References
- Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255. MR 27954, DOI 10.1007/BF02395019
- M. Brelot and G. Choquet, Espaces et lignes de Green, Ann. Inst. Fourier (Grenoble) 3 (1951), 199–263 (1952) (French). MR 62883
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Frank Forelli, Bounded holomorphic functions and projections, Illinois J. Math. 10 (1966), 367–380. MR 193534
- Morisuke Hasumi, Invariant subspace theorems for finite Riemann surfaces, Canadian J. Math. 18 (1966), 240–255. MR 190790, DOI 10.4153/CJM-1966-027-1
- Morisuke Hasumi, Invariant subspaces on open Riemann surfaces, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 4, vii, 241–286 (1975) (English, with French summary). MR 364647
- Morisuke Hasumi, Invariant subspaces on open Riemann surfaces. II, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, viii, 273–299 (English, with French summary). MR 407283 —, Weak-star maximality of ${H^\infty }$ for surfaces of Parreau-Widom type, preprint. C. W. Neville, Ideals and submodules of analytic functions on infinitely connected plane domains, Thesis, University of Illinois at Urbana-Champaign, Urbana, Ill., 1972.
- Charles W. Neville, Invariant subspaces of Hardy classes on infinitely connected plane domains, Bull. Amer. Math. Soc. 78 (1972), 857–860. MR 301206, DOI 10.1090/S0002-9904-1972-13061-1 —, Invariant subspaces of Hardy classes on infinitely connected open surfaces, Mem. Amer. Math. Soc., No. 160.
- M. Parreau, Théorème de Fatou et problème de Dirichlet pour les lignes de Green de certaines surfaces de Riemann, Ann. Acad. Sci. Fenn. Ser. A I 250/25 (1958), 8 (French). MR 0098180
- Arthur H. Read, A converse of Cauchy’s theorem and applications to extremal problems, Acta Math. 100 (1958), 1–22. MR 98178, DOI 10.1007/BF02559600
- H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1–24. MR 138747, DOI 10.1007/BF01195147
- L. A. Rubel and A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 235–277. MR 198281
- Donald Sarason, The $H^{p}$ spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965), 78. MR 188824
- T. P. Srinivasan, Doubly invariant subspaces, Pacific J. Math. 14 (1964), 701–707. MR 164229
- T. P. Srinivasan, Simply invariant subspaces and generalized analytic functions, Proc. Amer. Math. Soc. 16 (1965), 813–818. MR 208409, DOI 10.1090/S0002-9939-1965-0208409-5
- Michael Voichick, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc. 111 (1964), 493–512. MR 160920, DOI 10.1090/S0002-9947-1964-0160920-5
- Michael Voichick, Invariant subspaces on Riemann surfaces, Canadian J. Math. 18 (1966), 399–403. MR 190791, DOI 10.4153/CJM-1966-042-8
- Harold Widom, ${\cal H}_{p}$ sections of vector bundles over Riemann surfaces, Ann. of Math. (2) 94 (1971), 304–324. MR 288780, DOI 10.2307/1970862
- Charles M. Stanton, Bounded analytic functions on a class of open Riemann surfaces, Pacific J. Math. 59 (1975), no. 2, 557–565. MR 414897
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 737-757
- MSC: Primary 30D55; Secondary 30F25, 46J15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0709581-6
- MathSciNet review: 709581