A strong type $(2, 2)$ estimate for a maximal operator associated to the Schrödinger equation
HTML articles powered by AMS MathViewer
- by Carlos E. Kenig and Alberto Ruiz
- Trans. Amer. Math. Soc. 280 (1983), 239-246
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712258-4
- PDF | Request permission
Abstract:
Let ${T^{\ast } }f(x) = \sup _{t > 0}|{T_t}f(x)|$, where $({T_t}f)^{\hat {}}(\xi ) = {e^{it|\xi |^2}}\hat f(\xi )/|\xi {|^{1/4}}$. We show that, given any finite interval $I$, $\int _I {|{T^{\ast } }f{|^2}\;dx \leqslant {C_I}\int _{\mathbf {R}} {|f(x){|^2}\;dx} }$, and that the above inequality is false with $2$ replaced by any $p < 2$. This maximal operator is related to solutions of the Schrödinger equation.References
- Lennart Carleson, Some analytic problems related to statistical mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 5–45. MR 576038
- Björn E. J. Dahlberg and Carlos E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 205–209. MR 654188 A. N. Kolmogorov and G. Seliverstov, Sur la convergence de séries de Fourier, C. R. Acad. Sci. Paris Sér. I Math. 178 (1925), 303-305.
- Alexander Nagel, Walter Rudin, and Joel H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), no. 2, 331–360. MR 672838, DOI 10.2307/2007064
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 239-246
- MSC: Primary 42A45; Secondary 35J10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712258-4
- MathSciNet review: 712258