Analyticity on rotation invariant families of curves
HTML articles powered by AMS MathViewer
- by Josip Globevnik
- Trans. Amer. Math. Soc. 280 (1983), 247-254
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712259-6
- PDF | Request permission
Abstract:
Let $\mathfrak {G}$ be a rotation invariant family of smooth Jordan curves contained in $\Delta$, the open unit disc in ${\mathbf {C}}$. For each $\Gamma \in \mathfrak {G}$ let ${D_\Gamma }$ be the simply connected domain bounded by $\Gamma$. We present various conditions which imply that if $f$ is a continuous function on $\Delta$ such that for every $\Gamma \in \mathfrak {G}$ the function $f|\Gamma$ has a continuous extension to $\overline {{D_\Gamma }}$ which is analytic in ${D_\Gamma }$, then $f$ is analytic in $\Delta$.References
- M. L. Agranovskiĭ, Fourier transformation on $\textrm {SL}_{2}(\textbf {R})$ and Morera-type theorems, Dokl. Akad. Nauk SSSR 243 (1978), no. 6, 1353–1356 (Russian). MR 517185
- M. L. Agranovskiĭ and R. È. Val′skiĭ, Maximality of invariant algebras of functions, Sibirsk. Mat. Ž. 12 (1971), 3–12 (Russian). MR 0285911
- Andrew Browder and John Wermer, Some algebras of functions on an arc, J. Math. Mech. 12 (1963), 119–130. MR 0144223
- Josip Globevnik, On holomorphic extensions from spheres in $\textbf {C}^{2}$, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), no. 1-2, 113–120. MR 700506, DOI 10.1017/S030821050001619X
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- Lawrence Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 237–254. MR 348084, DOI 10.1007/BF00250628
- Lawrence Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339–352. MR 335835, DOI 10.1007/BF02764713
- Lawrence Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), no. 3, 161–175. MR 562919, DOI 10.2307/2321600
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 247-254
- MSC: Primary 30E05; Secondary 30E20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712259-6
- MathSciNet review: 712259