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Abstract. Let ® be a rotation invariant family of smooth Jordan curves contained

in A, the open unit disc in C. For each T £ ® let DT be the simply connected

domain bounded by T. We present various conditions which imply that if / is a

continuous function on A such that for every Fe© the function f\T has a

continuous extension to DT which is analytic in Dr, then/is analytic in A.

1. Introduction. Denote by A the open unit disc in C and by G the group of

conformai automorphisms of A. Let © be a family of smooth (i.e. continuously

differentiable) Jordan curves contained in A which is Moebius invariant, i.e. w(T) G ©

whenever r G © and « G G. For each r G © denote by DT the simply connected

domain bounded by T and write T* = {z: z G Y). Agranovski and Valski [2] (see

also [1]) proved that

(1)

if/is a continuous function on A such that for every r G © the

function/| T has a continuous extension to DT , which is analytic

in Dr, then/is analytic in A.

Agranovski [1] sharpened this result by proving that if / is continuous on A and

satisfies frf(z)dz = 0 for every T G © then/is analytic in A. This suggests that one

should be able to prove (1) for families © much smaller than the Moebius invariant

ones.

A Moebius invariant family © is always rotation invariant (i.e. sT G © whenever

T G © and í G C, \s\= 1) and sometimes (e.g. if it consists of circles) it is also

symmetric (i.e. T* G © whenever T G © ).

In the present paper we study the rotation invariant, symmetric families © which

satisfy (1) and the rotation invariant families © which satisfy (1) for smooth

functions/. We present various examples of such minimal families.

If /is continuous then/|T has a continuous extension to DT which is analytic in

DT if and only if

1    ff(S)dS_
2iri

¡jm¿i=0  (2ec-^)
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[6], We will often use the fact that if / is continuous on A and holomorphic in

A — {0} then/is holomorphic in A.

If/is a continuous function on a circle | z |= r, r > 0, and if n G Z then define

A„(f,r)=r-"l-(2"e-'"*f(re"r)d<p.
¿TT Jr.

Note that if / is analytic in a neighbourhood of \z\= r then An(f,r) is the «th

coefficient in the Laurent series of /.

Lemma 1. Let 0 < r, < r2 and let f be a continuous function onQ, = {z: rx ^| z |< r2}.

Suppose that for each n G Z the function rt-*An(r) is constant on [r: rx «s r < r2}.

Then f is anlaytic in the interior of fl.

Proof. By the assumption there are numbers an, n G Z, such that for each r,

rx < r *£ r2, 2 anr"e'ne is the Fourier series of the function 0 \-+f(re'e). For m G N

let

°m(f,r,e")
m

2 a, kAkere

m-\

+     2    akrkeike
-(»■-I)

be its mm Cezàro mean. By the uniform continuity of/ the family {6 ¡->f(re'e);

r, < r < r2} is uniformly equicontinuous. The usual proof of Fejér's theorem [5]

applied to the series 'ï,c?xanrne'"s shows that am(f,r,e'e) converges to f(re'e)

uniformly for r and 0, rx «£ r < r2, 0 < 0 < 27r. Consequently, on ß, /(z) is the

uniform limit of the sequence

m *o + 2>/
m-\

zk + a¡,z

-1 -<m-\)

so / is analytic in the interior of ñ. This completes the proof.

2. Analyticity on a family obtained by rotating a single curve.

Lemma 2. Let T be a smooth Jordan curve in C and let D be the simply connected

domain bounded by T. Suppose that f is a continuous function on ß = {sz: z G T,

\s\= 1} such that for every s,\s\= 1, the function f\(sT) has a continuous extension to

sD which is analytic in sD. Then for every n G Z the function z H* z"An(\z\) has a

continuous extension from T — {0} to D which is analytic in D.

Proof. Fix n EZ. Let z G C — D. By the continuity of / the function (f, tp) i-»

e-in,pf(e"f'^)/(S - z) is continuous on T X [0,2m\. By our assumption,

If
fje'^dC

2-rri Jr     £ — z

so by Fubini,

0       (0<<jp<2tt),

-Itlfp

2 IT i Jt

Wt)dï
dy = 0.
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This proves that

f^^-fVnV(e,9?)^<p
¿WJ0

has a continuous extension from r to D which is anlaytic in D. If f ¥= 0 then

_L /-2V'"7(e'^) d<p = e""*f-L f2,re-'"V(e'>|^|) dy = ̂ „(Ifl)-
Z777 ./q Z77 ^q

This completes the proof.

For any domain D C C we write D* = {z: z G D}.

Theorem 1. Let T be a smooth Jordan curve in C. Denote by D the simply connected

domain bounded by T and assume that 0 G D. If f is a continuous function onQ = {sz:

z G T, |s|= 1} such that for every s, \s |= 1:

(i) the function f\ (sT) has a continuous extension to sD which is analytic in sD and

(ii) the function f\(sT*) has a continuous extension to sD* which is analytic in sD*,

then f is analytic in the interior of ß. /// is smooth (i.e. of class C' ) on ß then (i) alone

implies that f is analytic in the interior of ß.

Proof. Let / be continuous on ß and suppose that (i) holds. Since 0 G D it

follows by Lemma 2 that for each n G Z the function z h» An(\ z |) has a continuous

extension Fn from T to D which is analytic in D.

If (ii) also holds, then by Lemma 2 for each n G Z, the function z\-+An(\z\) has a

continuous extension Gn from T* to D* which is analytic in D. Fix « G Z. Note that

the function z h» Gn(z) is continuous on Z) and antianalytic in D. For every z G T

we have Fn(z) = A„(\z\) = Gn(z) which implies that the functions z \-+ Fn(z), zi-»

Gn(z), continuous on D and harmonic in D, coincide in D. It follows that Fn is a

constant, i.e. z \-* An(\z\) is constant on T. By Lemma 1 it follows that/is analytic in

the interior of ß.

Suppose now that/is smooth on ß and that (i) holds. It is easy to see that for each

n G Z the function z \->An(\z\) is smooth on T. Thus the proof will be complete once

we have shown that if z i-> $(z) is a smooth function on T that depends only on | z |

and if $ has a continuous extension í> to D which is analytic in D, then $ is a

constant. We follow Agranovski and Valski [2] and use an argument used by

Browder and Wermer [3]. Suppose that O is not a constant. Then $(D) is open, and

so by the smoothness of $, &(D±<£ <i>(T). Let c G t(D) - $(T). Then the function

z i-» $(z) — c is continuous on D, analytic in D, has a zero in D, and has no zero on

T. On T it depends only on | z | so the variation of its argument along T around D is

zero, a contradiction. This completes the proof.

Remark 1. Let T and D be as in Theorem 1. Suppose that / is continuous on ß. It

is an open question whether (i) alone implies that / is analytic in the interior of ß.

Standard arguments, e.g. convolving/with an approximate identity of a group to get

a smooth function [2, 9], do not apply since the rotation group is too small and the

process smoothens the function only in the direction perpendicular to the radius.

From the proof of Theorem 1 it follows that we could answer the question if we

knew that if z i-» F(z) is a continuous function on D, analytic in D and such that its
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boundary values depend only on | z |, then F is a constant. We are not able to prove

this. For certain domains D this problem is related to Question 1 in [3, p. 129].

The following corollary gives a characterization of analytic functions in an

annulus in terms of the behavior on certain circles (compare with [11, p. 169; 7,

Theorem 12.3.11]).

Corollary 1. Let 0 be in the exterior of a circle T C C and let ß be the annulus

obtained by rotating T around the origin. Iffis a continuous function on ß such that for

every s, \s\= 1, the function f\(sT) has a continuous extension to the closed disc

bounded by sT which is analytic in its interior, then f is analytic in the interior of ß.

Example 1. The function

Zr^f(z)
z3/z,    z#0,

0, z = 0,

is smooth on C Let a, b G C, b =£ 0. If \s|= 1 and a + sb ¥^ 0 then f(a + sb) =

s(a + sb)3/(b + sä) which shows that if |¿>|>|a| then s \-* f(a + sb) has a continu-

ous extension from 3A to A which is analytic in A. Consequently, for any open disc

DCC such that 0 G D, the function f\ 3D has a continuous extension to D which is

analytic in D. This shows that in Theorem 1 one cannot drop the assumption that

Oífl.

Remark 2. Let r > 0 and let © be the family of all circles in C of radius r. Let /be

continuous on C and let n G N. If

ff(z) dz =Jz"f(z) dz = 0

for every T G ©, then by a result of Zalcman [10, 11] / is entire. So, vanishing of

only two negative Fourier coefficients implies the analyticity of/. One cannot relax

the assumptions in Corollary 1 in this direction—here one needs the vanishing of all

negative Fourier coefficients. To see this, let n G N and define

/(e'T(2 + ei9)) = cos nO       (0 < r < 2tt, 0 < 6 < 2tt).

Then/is well defined in {z: 1 *S|z|< 3}. We have

f2"e""V(2e'T + e'v) dtp = f2V""'cos n(<p - t) dtp

= 2~X  i1''e'""P[e-inreinV + ^-imp] d(p = Q

whenever 0 < t < 2m and m G N, m ¥= n. So, all negative Fourier coefficients

vanish, except one, and yet /is not analytic in{z:l<|z|<3}.

3. Analyticity on general families. The analogue of Corollary 1 in the case when ß

is a disc does not hold: If © is the family of circles obtained by rotating the circle

[z — 1/21= 1/2 around the origin, then Example 1 shows that if

/is a continuous function on A such that for every T G © the function

(2)     -j /| T has a continuous extension to the closed disc bounded by T which

is analytic in its interior
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then it does not necessarily follow that/is analytic in A. Consequently, for no family

© obtained by rotating only one circle, (2) implies the analyticity of / in A (see the

discussion following Remark 3). It is interesting that two (suitable chosen) circles

suffice: If T0 C A is any circle having 0 in its exterior and if © is the family of all

circles obtained by rotating the circles T0 and \z — 1/21= 1/2 around the origin,

then (2) implies that/is analytic in A. This follows from Theorem 1, Lemma 2, and

the following

Lemma 3. Let T, D, ß and f be as in Lemma 2. Suppose that f is analytic in an open

annulus contained in ß. Then f is analytic in the interior of ß.

Proof. By the assumption there are a sequence an, n G Z, and an open annulus

S C ß such that ^4„(|z|) = a„ (z G 2, n G Z). It follows that there is a relatively

open set U C T such that

(3) A„(\z\) = a„       (zGC/,«GZ).

By Lemma 2, for each n G Z the function z h> z"An(\ z |) has a continuous extension

from T - {0} to ¿"which is analytic in D. Let n > 0. By (3) we have znAn(\ z |) = anz"

(z G U). Since z i-» anz" also has a continuous extension from T — {0} to D, which

is analytic in D, it follows that z"y4„(|z|) = a„z"(zGr — {0}) and consequently,

A„(\z |) = an (z G T — {0}). Let n < 0. Then z h» z~" has a continuous extension

from T — {0} to D which is analytic in D so the same holds for the function

z h> z-"[z"An(\z I)] = An(\z\). By (3) it follows that An(\z \) = a„(zET- {0}). Thus

we have proved that ^4„(|z|) = an (z G T — {0}, n G Z). Now the assertion follows

from Lemma 1. This completes the proof.

Theorem 2. Let % be a rotation invariant, symmetric family of smooth Jordan

curves contained in A. For each Y G © let DT be the simply connected domain bounded

by T, and let BT be the interior of the set [sz: z G V, \s\= 1}. Let B = Ure@ BT.

Suppose that

(a)(i) every continuous function on A, which is analytic in B, is analytic in A,

(ii) every connected component of B contains a domain DT, T G @, such that

0&Dr.
Then

(b) if fis a continuous function on A such that for every T G © the function f\ T has a

continuous extension to DT which is analytic in Dr, then fis analytic in A.

If we assume (a)(i) and if every T G © is a circle then (a)(ii) and (b) are equivalent.

If we assume that 0 is in the exterior of every T G © then (a)(i) and (b) are equivalent.

Proof. Note first that a connected component of B is either a disc (z: | z |< r] or

an annulus (z: r, <|z|< r2).

The last statement is an easy consequence of Theorem 1.

Suppose that (a) holds. Assume that / is a continuous function on A such that for

every T G © the function f\ T has a continuous extension to Dr which is analytic in

Dr. Let B0 be a connected component of B. By (a)(ii) there is a T0 G © such that

Dr C B0 and 0 Q: DT . By Theorem 1, / is analytic in Br . Let K be a closed annulus

contained in B0 such that K n Br ^ 0. There are Tx, r2,...,r„ G © such that
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K C U"=1 BT C B0 and such that BT D BT + ¡ ̂ = 0 (1 < ¿ < « - 1). Further, there

is some 7, 1 «s/ < n, such that BT D BTo^ 0. By Lemma 3, / is analytic in BT.

Using Lemma 3 step by step we prove that / is analytic in U?=15r. As K was

arbitrary it follows that / is analytic in B0 and as B0 was an arbitrary connected

component of B it follows by (a)(i) that/is analytic in A. This proves that (a) implies

(b).

Assume that every T G © is a circle and that (a)(i) holds. Suppose that (b) holds.

We have to prove that this implies (a)(ii). Assume, contrarily to (a)(ii), that there is a

connected component B0 of B such that 0 G Dr whenever T G © satisfies Bv C B0.

If B0 = {z: \z\< r) then define

and if B0 — {z: rx <\z\r2) then define

/(*) =

0, z = 0,

z2/z,      0<|z|*Sr,

[z3/r2,    r<|z|<l,

z3/r2,    |*|<r„

z2/z,      rx<\z[<r2,

'2z3/r22,    r2<|z|<l.

Then/is continuous on A and (see Example 1) for every T G © the function/| T has

a continuous extension to Dr which is analytic in DT yet / is not analytic in A, a

contradiction. This complete the proof.

Remark 3. It is not known whether in Theorem 2 one can drop the assumption

that © is symmetric. In our proof we used the symmetry when we applied Theorem

1. So this question is related to Remark 1. However, for smooth functions one can

prove a theorem, analogous to Theorem 1, without assuming that © is symmetric. In

the proof, analogous to the one above, one uses the second half of Theorem 1.

Now we present two examples of minimal rotation invariant families that satisfy

(b) in Theorem 2. Note that if © satisfies (b) then Uree> T must be dense in A. Were

this not so, there would be a continuous function / on A, vanishing on an open

subset of A containing Urs(S T and not vanishing identically. By (b), / would be

analytic in A, a contradiction.

Example 2. Let rn, n G Z, be a sequence satisfying 0 < rn < rn+x < 1 (n G Z),

lim ^r = 1, lim„ __./■„ = 0. For each n GZ let T„ be the circle of radius

(rn+x — rn)/2 with center (r„+1 + rn)/2. By Morera's theorem, © = [sYn: \s\= 1,

n G Z} satisfies (a)(i) so, by Theorem 2, © is a minimal rotation invariant family

satisfying (b).

Example 3. Let rn, n > 2, be a strictly increasing sequence, r2= 1/2, lim„_00 rn =

1. Let T, = {z: |z - 1/41= 1/4}, T2 = {z: |z - 1/41= 1/8}, and for each n > 2,

let r„ be the circle of radius (rn — rn__x)/2 with center (rn + rn_x)/2. Again, by

Theorem 2, © = {sT„: [s\= 1, n G N} is a mmimal rotation invariant family

satisfying (b).
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Our next example shows that in general (a) and (b) in Theorem 2 are not

equivalent.

Example 4. Let D be the convex hull of

{z: |4z - 3e"7/41< 1} U (z: |4z - 3e-i7,/4\< l}

U (re"p: 0 < r < 1, tt/4 =£|<p|*s tt).

Then r = 3D is smooth and satisfies T = T*. Let fi = {sz: z G T, \s\= 1} and let/

be a continuous function on ß such that for every i, |s|= 1, the function/|(íT) has

a continuous extension to sD which is analytic in sD. Fix s, \ s \ — 1. We show that / is

analytic in (sD) n Int ß by showing that, in (sD) n Int ß, / coincides with the

continuous extension $ of /|(íT) to sD which is analytic in sD. Fix a point

z G (sD) n Intß. By the definition of T there is an *,., |j, |= 1, such that z G sxT

and such that (sxT) D (sT) contains an arc. Consequently, if $, is the continuous

extension of/|(i,r) to sxD which is analytic in sxD then 0, = $ on (sD) n (sxD)

so f(z) = i>,(z) = $(z). This proves that for any s, \s\— 1,/is analytic in (sD) O

Int ß, so / is analytic in Int ß. This shows that in Theorem 2, (b) does not imply

(a)(ii).

Example 4 also shows that, for some curves, T one can drop the assumption that

0 G D in Theorem 1. By Example 1 one cannot do this for circles so it is natural

question whether the circles are the only curves T for which one cannot drop the

assumption that 0 G D in Theorem 1. There are other curves having this property:

Example 5. Let T be a smooth curve which can be parametrized as z = r(<p)e''p

(-tt =£ <p < it) where <pi-»r(<p) is strictly increasing and positive on [0, tt] and

satisfies r(<p) = r(-cp) (0 < <p < tt). Clearly T = T* and if z G T then z G T and

there are no other points w G T satisfying |w|=|z|. Denote by D the simply

connected domain bounded by T and let ip: D -» Ä be a continuous map which maps

D bianalytically onto A and which satisfies \p(0) = 0, 4>(r(0)) = 1. Then by symme-

try, i//(z) -\p(z) (z G T). Define the function $ on T by $(z) = \p(z) + \/i(z).

Since

*(z) = *(i) + l/^(z) = i(I) + 1/^(7)

= i/^(z) + ^(z) = $(z)     (zer),

it follows by the properties of T that one can define a continuous function F on

B= (íz: z GT, |*|= 1} by F(|zI) = <D(z)(z G T). Define/on ß by f(z) = zF(|z|)

(z G ß). Fix s, \s[= 1. We have /(5z) = ízF(|z|) = iz[t//(z) + l/^(z)] (z G T).

Since \p has a single zero at 0 the function z i-* sz[\¡/(z) + l/i^(z)] has a continuous

extension from r to D which is holomorphic in D. Consequently, / is a continuous

function on ß such that for every s, \s\— 1, the function f\(sT) has a continuous

extension to sD which is analytic in sD, yet/is not analytic in the interior of ß.

Examples 1, 4 and 5 indicate that there may be no simple characterization of the

curves T for which one can drop the assumption that 0Í i) in Theorem 1 and

therefore that there may be no simple characterization of rotation invariant, sym-

metric families © which satisfy (b) in Theorem 2.
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