Some prime elements in the lattice of interpretability types
HTML articles powered by AMS MathViewer
- by Pavel Pudlák
- Trans. Amer. Math. Soc. 280 (1983), 255-275
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712260-2
- PDF | Request permission
Abstract:
A general theorem is proved which implies that the types of $\text {PA}$ (Peano Arithmetic), $\text {ZF}$ (Zermelo-Fraenkel Set Theory) and $\text {GB}$ (Gödel-Bernays Set Theory) are prime in the lattice of interpretability types.References
- A. Ehrenfeucht and J. Mycielski, Theorems and problems on the lattice of local interpretability, manuscript.
- Haim Gaifman and Constantine Dimitracopoulos, Fragments of Peano’s arithmetic and the MRDP theorem, Logic and algorithmic (Zurich, 1980) Monograph. Enseign. Math., vol. 30, Univ. Genève, Geneva, 1982, pp. 187–206. MR 648303
- Per Lindström, Some results on interpretability, Proceedings from 5th Scandinavian Logic Symposium (Aalborg, 1979) Aalborg Univ. Press, Aalborg, 1979, pp. 329–361. MR 606608
- Richard Montague, Theories incomparable with respect to relative interpretability, J. Symbolic Logic 27 (1962), 195–211. MR 155750, DOI 10.2307/2964114
- Jan Mycielski, A lattice of interpretability types of theories, J. Symbolic Logic 42 (1977), no. 2, 297–305. MR 505480, DOI 10.2307/2272134
- J. B. Paris and C. Dimitracopoulos, A note on the undefinability of cuts, J. Symbolic Logic 48 (1983), no. 3, 564–569. MR 716616, DOI 10.2307/2273447
- Jeff B. Paris and Constantine Dimitracopoulos, Truth definitions for $\Delta _{0}$ formulae, Logic and algorithmic (Zurich, 1980) Monograph. Enseign. Math., vol. 30, Univ. Genève, Geneva, 1982, pp. 317–329. MR 648309
- Vítězslav Švejdar, Degrees of interpretability, Comment. Math. Univ. Carolin. 19 (1978), no. 4, 789–813. MR 518190
- Alfred Tarski, Undecidable theories, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1953. In collaboration with Andrzej Mostowski and Raphael M. Robinson. MR 0058532
- Robert L. Vaught, Axiomatizability by a schema, J. Symbolic Logic 32 (1967), 473–479. MR 228335, DOI 10.2307/2270175
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 255-275
- MSC: Primary 03F25; Secondary 03B10, 03H15
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712260-2
- MathSciNet review: 712260