Degenerate elliptic operators as regularizers
HTML articles powered by AMS MathViewer
- by R. N. Pederson
- Trans. Amer. Math. Soc. 280 (1983), 533-553
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716836-8
- PDF | Request permission
Abstract:
The spaces ${\mathcal {K}_{mk}}$, introduced in the Nehari Volume of Journal d’Analyse Mathématique, for nonnegative integer values of $m$ and arbitrary real values of $k$ are extended to negative values of $m$. The extension is consistent with the equivalence $\parallel {\zeta ^j}u{\parallel _{m,k}}\sim \parallel u{\parallel _{m,k - j}}$, the inequality $\parallel {D^\alpha }u{\parallel _{m,k}} \leqslant {\text {const}}\parallel u{\parallel _{m + |\alpha |,k + |\alpha |}}$, and the generalized Cauchy-Schwarz inequality $|\langle {u,v} \rangle | \leqslant \parallel u {\parallel _{m,k}}\parallel v\parallel _{ - m, - k}$. (Here $\langle u, \upsilon \rangle$ is the ${L_2}$ scalar product.) There exists a second order degenerate elliptic operator which maps ${\mathcal {K}_{m,k}} 1 - 1$ onto ${\mathcal {K}_{m - 2,k}}$. These facts are used to simplify proof of regularity theorems for elliptic and hyperbolic problems and to give new results concerning growth rates at the boundary for the coefficients of the operator and the forcing function. (See Notices Amer. Math. Soc. 28 (1981), 226.)References
- Felix E. Browder, On the regularity properties of solutions of elliptic differential equations, Comm. Pure Appl. Math. 9 (1956), 351–361. MR 90740, DOI 10.1002/cpa.3160090307
- Gaetano Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, Berlin-New York, 1965. MR 0209639
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306 L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin, 1963.
- J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 234118, DOI 10.1002/cpa.3160200410
- Peter D. Lax, On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615–633. MR 78558, DOI 10.1002/cpa.3160080411
- Sigeru Mizohata, Unicité du prolongement des solutions des équations elliptiques du quatrième ordre, Proc. Japan Acad. 34 (1958), 687–692 (French). MR 105553
- Louis Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 649–675. MR 75415, DOI 10.1002/cpa.3160080414
- O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife. MR 0457908
- O. A. Oleĭnik, The Cauchy problem and a boundary value problem for hyperbolic equations of the second order degenerating in the region and on its boundary, Dokl. Akad. Nauk SSSR 169 (1966), 525–528 (Russian). MR 0203267
- R. N. Pederson, An equivalent norm for the Sobolev space $\breve H_{m}$, J. Analyse Math. 36 (1979), 213–216 (1980). MR 581814, DOI 10.1007/BF02798781
- R. N. Pederson, On the unique continuation theorem for certain second and fourth order elliptic equations, Comm. Pure Appl. Math. 11 (1958), 67–80. MR 98900, DOI 10.1002/cpa.3160110104 L. Schwarz, Théorie des distributions. I, II, Hermann, Paris, 1950-1951.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 533-553
- MSC: Primary 35J70
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716836-8
- MathSciNet review: 716836