Real vs. complex rational Chebyshev approximation on an interval

Authors:
Lloyd N. Trefethen and Martin H. Gutknecht

Journal:
Trans. Amer. Math. Soc. **280** (1983), 555-561

MSC:
Primary 41A25; Secondary 41A50

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716837-X

MathSciNet review:
716837

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $f \in C[ - 1,1]$ is real-valued, let ${E^{r}(f)}$ and ${E^{c}(f)}$ be the errors in best approximation to $f$ in the supremum norm by rational functions of type $(m,n)$ with real and complex coefficients, respectively. It has recently been observed that ${E^c}(f) < {E^r}(f)$ can occur for any $n \geqslant 1$, but for no $n \geqslant 1$ is it known whether ${\gamma _{mn}} = \inf _f {E^c}(f)/{E^{r}(f)}$ is zero or strictly positive. Here we show that both are possible: ${\gamma _{01}} > 0$, but ${\gamma _{mn}} = 0$ for $n \geqslant m + 3$. Related results are obtained for approximation on regions in the plane.

- Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler,
*On a problem of Saff and Varga concerning best rational approximation*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 235–245. MR**0473636** - Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler,
*Best uniform approximation by linear fractional transformations*, J. Approx. Theory**25**(1979), no. 3, 204–224. MR**531411**, DOI https://doi.org/10.1016/0021-9045%2879%2990012-1 - S. W. Ellacott,
*A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 2, 218–220. MR**640950**, DOI https://doi.org/10.1090/S0273-0979-1982-14987-4
M. H. Gutknecht, - K. N. Lungu,
*The best approximations by rational functions*, Mat. Zametki**10**(1971), 11–15 (Russian). MR**290004** - Günter Meinardus,
*Approximation of functions: Theory and numerical methods*, Expanded translation of the German edition, Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. Translated by Larry L. Schumaker. MR**0217482** - Arden Ruttan,
*On the cardinality of a set of best complex rational approximations to a real function*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 303–319. MR**0473647** - E. B. Saff and R. S. Varga,
*Nonuniqueness of best approximating complex rational functions*, Bull. Amer. Math. Soc.**83**(1977), no. 3, 375–377. MR**433108**, DOI https://doi.org/10.1090/S0002-9904-1977-14276-6 - E. B. Saff and R. S. Varga,
*Nonuniqueness of best complex rational approximations to real functions on real intervals*, J. Approx. Theory**23**(1978), no. 1, 78–85. MR**499031**, DOI https://doi.org/10.1016/0021-9045%2878%2990081-3 - A. Talbot,
*On a class of Tchebysheffian approximation problems solvable algebraically*, Proc. Cambridge Philos. Soc.**58**(1962), 244–267. MR**165291** - Lloyd N. Trefethen,
*Rational Chebyshev approximation on the unit disk*, Numer. Math.**37**(1981), no. 2, 297–320. MR**623046**, DOI https://doi.org/10.1007/BF01398258 - Richard S. Varga,
*Topics in polynomial and rational interpolation and approximation*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 81, Presses de l’Université de Montréal, Montreal, Que., 1982. MR**654329** - J. L. Walsh,
*Interpolation and approximation by rational functions in the complex domain*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**
A. A. Gončar, - A. Ruttan,
*The length of the alternation set as a factor in determining when a best real rational approximation is also a best complex rational approximation*, J. Approx. Theory**31**(1981), no. 3, 230–243. MR**624011**, DOI https://doi.org/10.1016/0021-9045%2881%2990093-9 - J. L. Walsh,
*On approximation to an analytic function by rational functions of best approximation*, Math. Z.**38**(1934), no. 1, 163–176. MR**1545445**, DOI https://doi.org/10.1007/BF01170632

*On complex rational approximation*, Computational Aspects of Complex Analysis (H. Werner, et al., eds.), Reidel, Dordrecht, 1983. ---,

*Algebraically solvable Chebyshev approximation problems*, Approximation Theory IV (L. Schumaker, ed.), Academic Press, New York (in press). M. H. Gutknecht and L. N. Trefethen,

*Nonuniqueness of rational Chebyshev approximations on the unit disk*, J. Approximation Theory (in press).

*The rate of approximation by rational fractions and the properties of functions*, Proc. Internat. Congress of Mathematicians (Moscow, 1966), Izdat. "Mir", Moscow, 1968. (Russian) M. H. Gutknecht and L. N. Trefethen,

*Real vs. complex rational Chebyshev approximation on complex domains*, Numerische Methoden der Approximationstheorie, vol. 7 (L. Collatz and H. Werner, eds.), Birkhäuser (in press).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A25,
41A50

Retrieve articles in all journals with MSC: 41A25, 41A50

Additional Information

Keywords:
Chebyshev approximation,
rational approximation

Article copyright:
© Copyright 1983
American Mathematical Society