Real vs. complex rational Chebyshev approximation on an interval
HTML articles powered by AMS MathViewer
- by Lloyd N. Trefethen and Martin H. Gutknecht
- Trans. Amer. Math. Soc. 280 (1983), 555-561
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716837-X
- PDF | Request permission
Abstract:
If $f \in C[ - 1,1]$ is real-valued, let ${E^{r}(f)}$ and ${E^{c}(f)}$ be the errors in best approximation to $f$ in the supremum norm by rational functions of type $(m,n)$ with real and complex coefficients, respectively. It has recently been observed that ${E^c}(f) < {E^r}(f)$ can occur for any $n \geqslant 1$, but for no $n \geqslant 1$ is it known whether ${\gamma _{mn}} = \inf _f {E^c}(f)/{E^{r}(f)}$ is zero or strictly positive. Here we show that both are possible: ${\gamma _{01}} > 0$, but ${\gamma _{mn}} = 0$ for $n \geqslant m + 3$. Related results are obtained for approximation on regions in the plane.References
- Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler, On a problem of Saff and Varga concerning best rational approximation, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 235–245. MR 0473636
- Colin Bennett, Karl Rudnick, and Jeffrey D. Vaaler, Best uniform approximation by linear fractional transformations, J. Approx. Theory 25 (1979), no. 3, 204–224. MR 531411, DOI 10.1016/0021-9045(79)90012-1
- S. W. Ellacott, A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 218–220. MR 640950, DOI 10.1090/S0273-0979-1982-14987-4 M. H. Gutknecht, On complex rational approximation, Computational Aspects of Complex Analysis (H. Werner, et al., eds.), Reidel, Dordrecht, 1983. —, Algebraically solvable Chebyshev approximation problems, Approximation Theory IV (L. Schumaker, ed.), Academic Press, New York (in press). M. H. Gutknecht and L. N. Trefethen, Nonuniqueness of rational Chebyshev approximations on the unit disk, J. Approximation Theory (in press).
- K. N. Lungu, The best approximations by rational functions, Mat. Zametki 10 (1971), 11–15 (Russian). MR 290004
- Günter Meinardus, Approximation of functions: Theory and numerical methods, Expanded translation of the German edition, Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. Translated by Larry L. Schumaker. MR 0217482
- Arden Ruttan, On the cardinality of a set of best complex rational approximations to a real function, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 303–319. MR 0473647
- E. B. Saff and R. S. Varga, Nonuniqueness of best approximating complex rational functions, Bull. Amer. Math. Soc. 83 (1977), no. 3, 375–377. MR 433108, DOI 10.1090/S0002-9904-1977-14276-6
- E. B. Saff and R. S. Varga, Nonuniqueness of best complex rational approximations to real functions on real intervals, J. Approx. Theory 23 (1978), no. 1, 78–85. MR 499031, DOI 10.1016/0021-9045(78)90081-3
- A. Talbot, On a class of Tchebysheffian approximation problems solvable algebraically, Proc. Cambridge Philos. Soc. 58 (1962), 244–267. MR 165291
- Lloyd N. Trefethen, Rational Chebyshev approximation on the unit disk, Numer. Math. 37 (1981), no. 2, 297–320. MR 623046, DOI 10.1007/BF01398258
- Richard S. Varga, Topics in polynomial and rational interpolation and approximation, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 81, Presses de l’Université de Montréal, Montreal, Que., 1982. MR 654329
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587 A. A. Gončar, The rate of approximation by rational fractions and the properties of functions, Proc. Internat. Congress of Mathematicians (Moscow, 1966), Izdat. "Mir", Moscow, 1968. (Russian) M. H. Gutknecht and L. N. Trefethen, Real vs. complex rational Chebyshev approximation on complex domains, Numerische Methoden der Approximationstheorie, vol. 7 (L. Collatz and H. Werner, eds.), Birkhäuser (in press).
- A. Ruttan, The length of the alternation set as a factor in determining when a best real rational approximation is also a best complex rational approximation, J. Approx. Theory 31 (1981), no. 3, 230–243. MR 624011, DOI 10.1016/0021-9045(81)90093-9
- J. L. Walsh, On approximation to an analytic function by rational functions of best approximation, Math. Z. 38 (1934), no. 1, 163–176. MR 1545445, DOI 10.1007/BF01170632
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 555-561
- MSC: Primary 41A25; Secondary 41A50
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716837-X
- MathSciNet review: 716837