## Lower semicontinuity, existence and regularity theorems for elliptic variational integrals of multiple valued functions

HTML articles powered by AMS MathViewer

- by Pertti Mattila
- Trans. Amer. Math. Soc.
**280**(1983), 589-610 - DOI: https://doi.org/10.1090/S0002-9947-1983-0716839-3
- PDF | Request permission

## Abstract:

Let $A$ be an open set in ${{\mathbf {R}}^m}$ with compact smooth boundary, and let ${\mathbf {Q}}$ be the space of unordered $Q$ tuples of points of ${{\mathbf {R}}^n}$. F. J. Almgren, Jr. has developed a theory for functions $f:A \to {\mathbf {Q}}$ and used them to prove regularity theorems for area minimizing integral currents. In particular, he has defined in a natural way the space ${\mathcal {Y}_2}(A,{\mathbf {Q}})$ of functions $f:A \to {\mathbf {Q}}$ with square summable distributional partial derivatives and the Dirichlet integral $\operatorname {Dir}(f;A)$ of such functions. In this paper we study more general constant coefficient quadratic integrals ${\mathbf {G}}(f;A)$ which are $Q$ elliptic in the sense that there is $c > 0$ such that ${\mathbf {G}}(f;A) \geqslant c \operatorname {Dir}(f;A)$ for $f \in {\mathcal {Y}_2}(A;{\mathbf {Q}})$ with zero boundary values. We prove a lower semicontinuity theorem which leads to the existence of a ${\mathbf {G}}$ minimizing function with given reasonable boundary values. In the case $m = 2$ we also show that such a function is Hölder continuous and regular on an open dense set. In the case $m \geqslant 3$ the regularity problem remains open.## References

- F. J. Almgren, Jr., ${\mathbf {Q}}$
- F. J. Almgren Jr.,
*Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure*, Ann. of Math. (2)**87**(1968), 321–391. MR**225243**, DOI 10.2307/1970587
—, - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443**
L. van Hove, - Charles B. Morrey Jr.,
*Multiple integrals in the calculus of variations*, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR**0202511**
V. Scheffer, - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095**
F. J. Terpsta,

*valued functions minimizing Dirichlet’s integral and the regularity of area minimizing integral currents up to codimension two*, preprint.

*Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents*, Minimal Submanifolds and Geodesics (M. Obata, editor), Kaigai, Tokyo, 1978, pp. 1-6.

*Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues*, Indag. Math.

**9**(1947), 3-8.

*Regularity and irregularity of solutions to non-linear second order elliptic systems of partial differential equations and inequalities*, Princeton Univ. Thesis, Princeton, N.J., 1974.

*Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung*, Math. Ann.

**116**(1938), 166-180.

## Bibliographic Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**280**(1983), 589-610 - MSC: Primary 49F22
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716839-3
- MathSciNet review: 716839