Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem
HTML articles powered by AMS MathViewer

by David Lee Hilliker and E. G. Straus PDF
Trans. Amer. Math. Soc. 280 (1983), 637-657 Request permission

Abstract:

In 1887 Runge [13] proved that a binary Diophantine equation $F(x,y) = 0$, with $F$ irreducible, in a class including those in which the leading form of $F$ is not a constant multiple of a power of an irreducible polynomial, has only a finite number of solutions. It follows from Runge’s method of proof that there exists a computable upper bound for the absolute value of each of the integer solutions $x$ and $y$. Runge did not give such a computation. Here we first deduce Runge’s Theorem from a more general theorem on Puiseux series that may be of interest in its own right. Second, we extend the Puiseux series theorem and deduce from the generalized version a generalized form of Runge’s Theorem in which the solutions $x$ and $y$ of the polynomial equation $F(x,y) = 0$ are integers, satisfying certain conditions, of an arbitrary algebraic number field. Third, we compute bounds for the solutions $(x,y) \in {{\mathbf {Z}}^2}$ in terms of the height of $F$ and the degrees in $x$ and $y$ of $F$.
References
  • William J. Ellison, Variations sur un thème de Carl Runge, Séminaire Delange-Pisot-Poitou (13e année:1971/72), Théorie des nombres, Fasc. 1, Exp. No. 9, Secrétariat Mathématique, Paris, 1973, pp. 4 (French). MR 0419348
  • E. Heine, Handbuch der Kugelfunctionen. Theorie und Anwendungen. Vols. I, II, 2nd ed., G. Reimer, Berlin, 1878; 1881. See Jbuch. 10, 332; 13, 390-391.
  • David Lee Hilliker, An algorithm for solving a certain class of Diophantine equations. I, Math. Comp. 38 (1982), no. 158, 611–626. MR 645676, DOI 10.1090/S0025-5718-1982-0645676-6
  • —, An algorithm for solving a certain class of Diophantine equations. II (to be submitted). —, An algorithm for computing the values of the ramification index in the Puiseux series expansions of an algebraic function (to be submitted).
  • David Lee Hilliker and E. G. Straus, On Puiseux series whose curves pass through an infinity of algebraic lattice points, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 59–62. MR 682822, DOI 10.1090/S0273-0979-1983-15083-8
  • William Judson LeVeque, Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. MR 0080682
  • Edmond Maillet, Sur les équations indéterminées à deux et trois variables qui n’ont qu’un nombre fini de solutions en nombres entiers, J. Math. Pures Appl. 6 (1900), 261-277. An abstract appeared in C. R. Acad. Sci. Paris 128 (1899), 1383-1395. See Jbuch. 30, 188-189; 31, 190-191. —, Sur une catégorie de’équations indéterminées n’ayant en nombres entiers qu’un nombre fini de solutions, Nouv. Ann. Math. 18 (1918), 281-292. See Jbuch. 46, 210.
  • L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
  • Harry Pollard, The Theory of Algebraic Numbers, Carus Monograph Series, no. 9, Mathematical Association of America, Buffalo, N.Y., 1950. MR 0037319
  • G. Pólya and G. Szegö, Problems and theorems in analysis, Vols. I, II, Revised and enlarged transl. of 4th German ed., Die Grundlehren der Math. Wissenschaften, Bands 193, 216, Springer-Verlag, New York and Berlin, 1972, 1976; 1st German ed., Aufgaben und Lehrsätze aus der Analysis, Julius Springer, Berlin, 1925; 4th German ed., 1970, 1971; 1st German ed. also published in two volumes by Dover, New York, 1945. C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen, J. Reine Angew. Math. 100 (1887), 425-435. See Jbuch. 19, 76-77.
  • A. Schinzel, An improvement of Runge’s theorem on Diophantine equations, Comment. Pontificia Acad. Sci. 2 (1969), no. 20, 1–9 (English, with Latin summary). MR 276174
  • Carl Siegel, Approximation algebraischer Zahlen, Math. Z. 10 (1921), no. 3-4, 173–213 (German). MR 1544471, DOI 10.1007/BF01211608
  • —, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Natur. K1. 1 (1929). Also in Gesammelte Abhandlungen Vol. I, Springer-Verlag, Berlin and New York. 1966, pp. 209-266. See Jbuch. 56, 180-184. Th. Skolem. Über ganzzahlige Löhungen einer Klasse unbestimmter Gleichungen, Norsk mat. Foren. Akrifter, Ser. I 10 (1922). See Jbuch. 48, 139. —, Diophantische Gleichungen, Verlag von Julius Springer, Berlin, 1938, reprinted by Chelsea, New York, 1950.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 11D41
  • Retrieve articles in all journals with MSC: 11D41
Additional Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 280 (1983), 637-657
  • MSC: Primary 11D41
  • DOI: https://doi.org/10.1090/S0002-9947-1983-0716842-3
  • MathSciNet review: 716842