## Invariant theory and the lambda algebra

HTML articles powered by AMS MathViewer

- by William M. Singer PDF
- Trans. Amer. Math. Soc.
**280**(1983), 673-693 Request permission

## Abstract:

Let $A$ be the Steenrod algebra over the field ${F_2}$. In this paper we construct for any left $A$-module $M$ a chain complex whose homology groups are isomorphic to the groups $\operatorname {Tor}_s^A({F_2},M)$. This chain complex in homological degree $s$ is built from a ring of invariants associated with the action of the linear group $G{L_s}({F_2})$ on a certain algebra of Laurent series. Thus, the homology of the Steenrod algebra (and so the Adams spectral sequence for spheres) is seen to have a close relationship to invariant theory. A key observation in our work is that the Adem relations can be described in terms of the invariant theory of $G{L_2}({F_2})$. Our chain complex is not new: it turns out to be isomorphic to the one constructed by Kan and his coworkers from the dual of the lambda algebra. Thus, one effect of our work is to give an invariant-theoretic interpretation of the lambda algebra. As a consequence we find that the dual of lambda supports an action of the Steenrod algebra that commutes with the differential. The differential itself appears as a kind of "residue map". We are also able to describe the coalgebra structure of the dual of lambda using our invariant-theoretic language.## References

- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger,
*The $\textrm {mod}-p$ lower central series and the Adams spectral sequence*, Topology**5**(1966), 331โ342. MR**199862**, DOI 10.1016/0040-9383(66)90024-3 - A. K. Bousfield and E. B. Curtis,
*A spectral sequence for the homotopy of nice spaces*, Trans. Amer. Math. Soc.**151**(1970), 457โ479. MR**267586**, DOI 10.1090/S0002-9947-1970-0267586-7 - Leonard Eugene Dickson,
*A fundamental system of invariants of the general modular linear group with a solution of the form problem*, Trans. Amer. Math. Soc.**12**(1911), no.ย 1, 75โ98. MR**1500882**, DOI 10.1090/S0002-9947-1911-1500882-4 - Leif Kristensen,
*On a Cartan formula for secondary cohomology operations*, Math. Scand.**16**(1965), 97โ115. MR**196740**, DOI 10.7146/math.scand.a-10751 - Ib Madsen,
*On the action of the Dyer-Lashof algebra in $H_{\ast }(G)$*, Pacific J. Math.**60**(1975), no.ย 1, 235โ275. MR**388392** - John W. Milnor and John C. Moore,
*On the structure of Hopf algebras*, Ann. of Math. (2)**81**(1965), 211โ264. MR**174052**, DOI 10.2307/1970615 - Huแปณnh Mui,
*Modular invariant theory and cohomology algebras of symmetric groups*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**22**(1975), no.ย 3, 319โ369. MR**422451** - William M. Singer,
*A new chain complex for the homology of the Steenrod algebra*, Math. Proc. Cambridge Philos. Soc.**90**(1981), no.ย 2, 279โ292. MR**620738**, DOI 10.1017/S0305004100058746 - William M. Singer,
*Iterated loop functors and the homology of the Steenrod algebra. II. A chain complex for $\Omega ^{k}_{s}M$*, J. Pure Appl. Algebra**16**(1980), no.ย 1, 85โ97. MR**549706**, DOI 10.1016/0022-4049(80)90044-4 - William M. Singer,
*The construction of certain algebras over the Steenrod algebra*, J. Pure Appl. Algebra**11**(1977/78), no.ย 1-3, 53โ59. MR**467746**, DOI 10.1016/0022-4049(77)90039-1 - Clarence Wilkerson,
*Classifying spaces, Steenrod operations and algebraic closure*, Topology**16**(1977), no.ย 3, 227โ237. MR**442932**, DOI 10.1016/0040-9383(77)90003-9

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**280**(1983), 673-693 - MSC: Primary 55Q45; Secondary 55S10, 55T15, 55U10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716844-7
- MathSciNet review: 716844