Representations of generic algebras and finite groups of Lie type

Authors:
R. B. Howlett and G. I. Lehrer

Journal:
Trans. Amer. Math. Soc. **280** (1983), 753-779

MSC:
Primary 20G05; Secondary 16A64, 16A65

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716849-6

MathSciNet review:
716849

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The complex representation theory of a finite Lie group is related to that of certain "generic algebras". As a consequence, formulae are derived ("the Comparison Theorem"), relating multiplicities in to multiplicities in the Weyl group of . Applications include an explicit description of the dual (see below) of an arbitrary irreducible complex representation of .

**[1]**Dean Alvis,*The duality operation in the character ring of a finite Chevalley group*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 6, 907–911. MR**546315**, https://doi.org/10.1090/S0273-0979-1979-14690-1**[2]**N. Bourbaki,*Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations*, Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964 (French). MR**0194450****[3]**Charles W. Curtis,*Truncation and duality in the character ring of a finite group of Lie type*, J. Algebra**62**(1980), no. 2, 320–332. MR**563231**, https://doi.org/10.1016/0021-8693(80)90185-4**[4]**Charles W. Curtis,*Reduction theorems for characters of finite groups of Lie type*, J. Math. Soc. Japan**27**(1975), no. 4, 666–688. MR**399282**, https://doi.org/10.2969/jmsj/02740666**[5]**C. W. Curtis, N. Iwahori, and R. Kilmoyer,*Hecke algebras and characters of parabolic type of finite groups with (𝐵, 𝑁)-pairs*, Inst. Hautes Études Sci. Publ. Math.**40**(1971), 81–116. MR**347996****[6]**Charles W. Curtis and Irving Reiner,*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR**0144979****[7]**R. B. Howlett and G. I. Lehrer,*A comparison theorem and other formulae in the character ring of a finite group of Lie type*, Papers in algebra, analysis and statistics (Hobart, 1981) Contemp. Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1981, pp. 285–288. MR**655984****[8]**R. B. Howlett and G. I. Lehrer,*Duality in the normalizer of a parabolic subgroup of a finite Coxeter group*, Bull. London Math. Soc.**14**(1982), no. 2, 133–136. MR**647196**, https://doi.org/10.1112/blms/14.2.133**[9]**R. B. Howlett and G. I. Lehrer,*Induced cuspidal representations and generalised Hecke rings*, Invent. Math.**58**(1980), no. 1, 37–64. MR**570873**, https://doi.org/10.1007/BF01402273**[10]**G. Lusztig,*Irreducible representations of finite classical groups*, Invent. Math.**43**(1977), no. 2, 125–175. MR**463275**, https://doi.org/10.1007/BF01390002**[11]**Nagayoshi Iwahori,*Generalized Tits system (Bruhat decompostition) on 𝑝-adic semisimple groups*, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 71–83. MR**0215858****[12]**Kathy McGovern,*Multiplicities of principal series representations of finite groups with split (𝐵,𝑁)-pairs*, J. Algebra**77**(1982), no. 2, 419–442. MR**673126**, https://doi.org/10.1016/0021-8693(82)90264-2

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20G05,
16A64,
16A65

Retrieve articles in all journals with MSC: 20G05, 16A64, 16A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716849-6

Article copyright:
© Copyright 1983
American Mathematical Society