Uniqueness of torsion free connection on some invariant structures on Lie groups
HTML articles powered by AMS MathViewer
- by Michel Nguiffo Boyom and Georges Giraud
- Trans. Amer. Math. Soc. 280 (1983), 797-808
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716851-4
- PDF | Request permission
Abstract:
Let $\mathcal {G}$ be a connected Lie group with Lie algebra $\mathfrak {g}$. Let $\operatorname {Int}(\mathfrak {g})$ be the group of inner automorphisms of $\mathfrak {g}$. The group $\mathcal {G}$ is naturally equipped with $\operatorname {Int}(\mathfrak {g})$-reductions of the bundle of linear frames on $\mathcal {G}$. We investigate for what kind of Lie group the $0$-connection of E. Cartan is the unique torsion free connection adapted to any of those $\operatorname {Int}(\mathfrak {g})$-reductions.References
- Victor Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313–345. MR 263882
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329. MR 425012, DOI 10.1016/S0001-8708(76)80002-3
- I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1–114. MR 217822, DOI 10.1007/BF02787690
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 797-808
- MSC: Primary 53C05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716851-4
- MathSciNet review: 716851