Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Length dependence of solutions of FitzHugh-Nagumo equations
HTML articles powered by AMS MathViewer

by Clyde Collins
Trans. Amer. Math. Soc. 280 (1983), 809-832
DOI: https://doi.org/10.1090/S0002-9947-1983-0716852-6

Abstract:

We investigate the behavior of the solutions of the problem \[ \begin {array}{*{20}{c}} {{u_t} = {u_{xx}} - \alpha u - \upsilon + {u^2}(1 + \alpha - u),} & {{\upsilon _t} = \eta {\upsilon _{xx}} + \sigma u - \gamma \upsilon ,} \\ {u(0,t) = g(t),\quad \upsilon (0,t) = h(t),} & {{u_x}(L,t) = {\upsilon _x}(L,t) = 0} \\ \end {array} \] where $t \geqslant 0$ and $0 < x < L \leqslant \infty$. Solutions of the above equations are considered a qualitative model of conduction of nerve axon impulses. Using explicit constructions and semigroup methods, we obtain decay results on the norms of differences between the solution for $L$ infinite and the solutions when $L$ is large but finite. We conclude that nerve impulses for long finite nerves become uniformly close to those of the semi-infinite nerves away from the right endpoint of the finite nerve.
References
  • Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
  • C. Collins, Length dependence of solutions of generalized FitzHugh-Nagumo equations, Ph.D. Thesis, Indiana Univ., Bloomington, 1981. R. FitzHugh, Mathematical models of excitation and propagation in nerve, Biological Engineering (H. Schwan, ed.), McGraw-Hill, New York, 1969, pp. 1-85.
  • Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
  • S. P. Hastings, Some mathematical problems from neurobiology, Amer. Math. Monthly 82 (1975), no. 9, 881–895. MR 381744, DOI 10.2307/2318490
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • Fritz John, Partial differential equations, 3rd ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York-Berlin, 1978. MR 514404
  • T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1980. R. Keynes, Ion channels in the nerve-cell membrane, Sci. Amer. 240 (1979), 126-135. S. Ochs, Elements of neurobiology, Wiley, New York, 1965.
  • Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
  • Jeffrey Rauch and Joel Smoller, Qualitative theory of the FitzHugh-Nagumo equations, Advances in Math. 27 (1978), no. 1, 12–44. MR 487094, DOI 10.1016/0001-8708(78)90075-0
  • M. Schonbek, Technical Reports 1739 and 1740, Math. Res. Center, Madison, Wis., 1977.
  • Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 0500055
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K57, 35B99, 92A09
  • Retrieve articles in all journals with MSC: 35K57, 35B99, 92A09
Bibliographic Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 280 (1983), 809-832
  • MSC: Primary 35K57; Secondary 35B99, 92A09
  • DOI: https://doi.org/10.1090/S0002-9947-1983-0716852-6
  • MathSciNet review: 716852