Length dependence of solutions of FitzHugh-Nagumo equations
HTML articles powered by AMS MathViewer
- by Clyde Collins
- Trans. Amer. Math. Soc. 280 (1983), 809-832
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716852-6
- PDF | Request permission
Abstract:
We investigate the behavior of the solutions of the problem \[ \begin {array}{*{20}{c}} {{u_t} = {u_{xx}} - \alpha u - \upsilon + {u^2}(1 + \alpha - u),} & {{\upsilon _t} = \eta {\upsilon _{xx}} + \sigma u - \gamma \upsilon ,} \\ {u(0,t) = g(t),\quad \upsilon (0,t) = h(t),} & {{u_x}(L,t) = {\upsilon _x}(L,t) = 0} \\ \end {array} \] where $t \geqslant 0$ and $0 < x < L \leqslant \infty$. Solutions of the above equations are considered a qualitative model of conduction of nerve axon impulses. Using explicit constructions and semigroup methods, we obtain decay results on the norms of differences between the solution for $L$ infinite and the solutions when $L$ is large but finite. We conclude that nerve impulses for long finite nerves become uniformly close to those of the semi-infinite nerves away from the right endpoint of the finite nerve.References
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338 C. Collins, Length dependence of solutions of generalized FitzHugh-Nagumo equations, Ph.D. Thesis, Indiana Univ., Bloomington, 1981. R. FitzHugh, Mathematical models of excitation and propagation in nerve, Biological Engineering (H. Schwan, ed.), McGraw-Hill, New York, 1969, pp. 1-85.
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- S. P. Hastings, Some mathematical problems from neurobiology, Amer. Math. Monthly 82 (1975), no. 9, 881–895. MR 381744, DOI 10.2307/2318490
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Fritz John, Partial differential equations, 3rd ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York-Berlin, 1978. MR 514404 T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1980. R. Keynes, Ion channels in the nerve-cell membrane, Sci. Amer. 240 (1979), 126-135. S. Ochs, Elements of neurobiology, Wiley, New York, 1965.
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Jeffrey Rauch and Joel Smoller, Qualitative theory of the FitzHugh-Nagumo equations, Advances in Math. 27 (1978), no. 1, 12–44. MR 487094, DOI 10.1016/0001-8708(78)90075-0 M. Schonbek, Technical Reports 1739 and 1740, Math. Res. Center, Madison, Wis., 1977.
- Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 0500055
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 809-832
- MSC: Primary 35K57; Secondary 35B99, 92A09
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716852-6
- MathSciNet review: 716852