Semidirect products and reduction in mechanics
HTML articles powered by AMS MathViewer
- by Jerrold E. Marsden, Tudor Raţiu and Alan Weinstein
- Trans. Amer. Math. Soc. 281 (1984), 147-177
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719663-1
- PDF | Request permission
Abstract:
This paper shows how to reduce a Hamiltonian system on the cotangent bundle of a Lie group to a Hamiltonian system in the dual of the Lie algebra of a semidirect product. The procedure simplifies, unifies, and extends work of Greene, Guillemin, Holm, Holmes, Kupershmidt, Marsden, Morrison, Ratiu, Sternberg and others. The heavy top, compressible fluids, magnetohydrodynamics, elasticity, the Maxwell-Vlasov equations and multifluid plasmas are presented as examples. Starting with Lagrangian variables, our method explains in a direct way why semidirect products occur so frequently in examples. It also provides a framework for the systematic introduction of Clebsch, or canonical, variables.References
- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141 P. Bretherton [1970], A note on Hamilton’s principle for perfect fluids, J. Fluid Mech. 44, 19-31.
- I. E. Dzyaloshinskiĭ and G. E. Volovick, Poisson brackets in condensed matter physics, Ann. Physics 125 (1980), no. 1, 67–97. MR 565078, DOI 10.1016/0003-4916(80)90119-0
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- Victor Guillemin and Shlomo Sternberg, The moment map and collective motion, Ann. Physics 127 (1980), no. 1, 220–253. MR 576424, DOI 10.1016/0003-4916(80)90155-4 —[1982] Symplectic techniques in physics (book in preparation).
- Darryl D. Holm and Boris A. Kupershmidt, Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity, Phys. D 6 (1983), no. 3, 347–363. MR 709394, DOI 10.1016/0167-2789(83)90017-9
- Philip J. Holmes and Jerrold E. Marsden, Horseshoes and Arnol′d diffusion for Hamiltonian systems on Lie groups, Indiana Univ. Math. J. 32 (1983), no. 2, 273–309. MR 690190, DOI 10.1512/iumj.1983.32.32023
- Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), no. 3, 273–294 (1977). MR 420024, DOI 10.1007/BF00251584
- D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), no. 4, 481–507. MR 478225, DOI 10.1002/cpa.3160310405 Kupershmidt [1982], Discrete Lax equations and differential-difference equations (lecture notes). Lie [1890], Theorie der Transformationsgruppen, Zweiter Abschnitt, Teubner, Leipzig.
- Jerrold E. Marsden, Well-posedness of the equations of a non-homogeneous perfect fluid, Comm. Partial Differential Equations 1 (1976), no. 3, 215–230. MR 405493, DOI 10.1080/03605307608820010
- Jerrold E. Marsden, Lectures on geometric methods in mathematical physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 37, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 619693 E. Marsden and T. J. R. Hughes [1983], Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs, N.J.
- Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI 10.1016/0034-4877(74)90021-4
- Jerrold E. Marsden and Alan Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D 4 (1981/82), no. 3, 394–406. MR 657741, DOI 10.1016/0167-2789(82)90043-4 —[1982b], Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D (to appear).
- J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid, and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. I (Torino, 1982), 1983, pp. 289–340. MR 773493
- Michael Tabor and Yvain M. Trève (eds.), Mathematical methods in hydrodynamics and integrability in dynamical systems, AIP Conference Proceedings, vol. 88, American Institute of Physics, New York, 1982. MR 694249
- Philip J. Morrison and John M. Greene, Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics, Phys. Rev. Lett. 45 (1980), no. 10, 790–794. MR 581650, DOI 10.1103/PhysRevLett.45.790 Ratiu [1980], Euler-Poisson equations on Lie algebras, Thesis, Univ. of Calif., Berkeley.
- Tudor Raţiu, Euler-Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 3, 1327–1328. MR 607652, DOI 10.1073/pnas.78.3.1327
- Tudor Raţiu, Euler-Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body, Amer. J. Math. 104 (1982), no. 2, 409–448. MR 654413, DOI 10.2307/2374165
- J. H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. MR 387499, DOI 10.1017/S0305004100051793 L. Seliger and G. B. Whitham [1968], Variational principles in continuum mechanics, Proc. Roy. Soc. London Ser. A 305, 1-25.
- Richard G. Spencer, The Hamiltonian structure of multispecies fluid electrodynamics, Mathematical methods in hydrodynamics and integrability in dynamical systems (La Jolla, Calif., 1981) AIP Conf. Proc., vol. 88, Amer. Inst. Phys., New York, 1982, pp. 121–126. MR 695510
- Shlomo Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 12, 5253–5254. MR 458486, DOI 10.1073/pnas.74.12.5253
- A. M. Vinogradov and B. A. Kuperšmidt, The structure of Hamiltonian mechanics, Uspehi Mat. Nauk 32 (1977), no. 4(196), 175–236, 288 (Russian). MR 0501143
- A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1977/78), no. 5, 417–420. MR 507025, DOI 10.1007/BF00400169
- Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 147-177
- MSC: Primary 58F05; Secondary 58G40, 70E15, 73C99, 76N99, 76W05, 78A99
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719663-1
- MathSciNet review: 719663