Nonlinear stability of asymptotic suction
HTML articles powered by AMS MathViewer
- by Milan Miklavčič
- Trans. Amer. Math. Soc. 281 (1984), 215-231
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719667-9
- PDF | Request permission
Abstract:
The semigroup approach to the Navier-Stokes equation in halfspace is used to prove that the stability of the asymptotic suction velocity profile is determined by the eigenvalues of the classical Orr-Sommerfeld equation. The usual obstacle, namely, that the corresponding linear operator contains $0$ in the spectrum is removed with the use of weighted spaces.References
- P. G. Drazin and William Hill Reid, Hydrodynamic stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge-New York, 1981. MR 604359
- Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315. MR 166499, DOI 10.1007/BF00276188
- Giovanni P. Galdi, Variational methods for stability of fluid motions in unbounded domains, Ricerche Mat. 27 (1978), no. 2, 387–404. MR 527429
- Giovanni P. Galdi and Salvatore Rionero, On magnetohydrodynamic motions in unbounded domains: stability and uniqueness, Ann. Mat. Pura Appl. (4) 115 (1977), 119–154 (1978). MR 475228, DOI 10.1007/BF02414713
- G. P. Galdi and S. Rionero, Local estimates and stability of viscous flows in an exterior domain, Arch. Rational Mech. Anal. 81 (1983), no. 4, 333–347. MR 683194, DOI 10.1007/BF00250859 —, A universal stability criterion in unbounded domains (to appear).
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- Daniel D. Joseph, Stability of fluid motions. I, Springer Tracts in Natural Philosophy, Vol. 27, Springer-Verlag, Berlin-New York, 1976. MR 0449147 T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin and New York, 1980.
- Milan Miklavčič, Eigenvalues of the Orr-Sommerfeld equation in an unbounded domain, Arch. Rational Mech. Anal. 83 (1983), no. 3, 221–228. MR 701903, DOI 10.1007/BF00251509
- Milan Miklavčič and Michael Williams, Stability of mean flows over an infinite flat plate, Arch. Rational Mech. Anal. 80 (1982), no. 1, 57–69. MR 656802, DOI 10.1007/BF00251524
- Hermann Schlichting, Boundary layer theory, McGraw-Hill, New York; Pergamon Press, London; Verlag G. Braun, Karlsruhe, 1955. Translated by J. Kestin. MR 0076530
- James Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal. 3 (1959), 1–13. MR 105250, DOI 10.1007/BF00284160
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 215-231
- MSC: Primary 35Q10; Secondary 47A10, 76E30
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719667-9
- MathSciNet review: 719667