$M$-structure in the Banach algebra of operators on $C_{0}(\Omega )$
HTML articles powered by AMS MathViewer
- by P. H. Flinn and R. R. Smith
- Trans. Amer. Math. Soc. 281 (1984), 233-242
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719668-0
- PDF | Request permission
Abstract:
The $M$-ideals in $B({C_0}(\Omega ))$, the space of continuous linear operators on ${C_0}(\Omega )$, are determined where $\Omega$ is a locally compact Hausdorff countably paracompact space. A one-to-one correspondence between $M$-ideals in $B({C_0}(\Omega ))$, open subsets of the Stone-Δech compactification of $\Omega$, and lower semicontinuous Hermitian projections in $B{({C_0}(\Omega ))^{\ast \ast }}$ is established.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98β128; ibid. (2) 96 (1972), 129β173. MR 352946, DOI 10.2307/1970895 β, Structure in real Banach spaces. II, Ann. of Math. (2) 96 (1972), 129-173.
- Leonard Asimow, Decomposable compact convex sets and peak sets for function spaces, Proc. Amer. Math. Soc. 25 (1970), 75β79. MR 259607, DOI 10.1090/S0002-9939-1970-0259607-8
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583, DOI 10.1017/CBO9781107359895
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682, DOI 10.1017/CBO9780511662515
- Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847β870. MR 143056, DOI 10.2140/pjm.1961.11.847
- F. Cunningham Jr., Edward G. Effros, and Nina M. Roy, $M$-structure in dual Banach spaces, Israel J. Math. 14 (1973), 304β308. MR 322528, DOI 10.1007/BF02764892
- C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219β224. MR 43446, DOI 10.4153/cjm-1951-026-2
- Patrick Flinn, A characterization of $M$-ideals in $B(l_{p})$ for $1<p<\infty$, Pacific J. Math. 98 (1982), no.Β 1, 73β80. MR 644939
- Julien Hennefeld, A decomposition for $B(X)^{\ast }$ and unique Hahn-Banach extensions, Pacific J. Math. 46 (1973), 197β199. MR 370265, DOI 10.2140/pjm.1973.46.197
- Julien Hennefeld, $M$-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), no.Β 6, 927β934. MR 551156, DOI 10.1512/iumj.1979.28.28065
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Γ svald Lima, $M$-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), no.Β 1, 207β217. MR 544588, DOI 10.7146/math.scand.a-11804
- Γ svald Lima, On $M$-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), no.Β 1, 27β36. MR 642613, DOI 10.1512/iumj.1982.31.31004
- Allan M. Sinclair, The states of a Banach algebra generate the dual, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 341β344. MR 312266, DOI 10.1017/S0013091500009627
- A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446β450. MR 275164, DOI 10.1090/S0002-9939-1971-0275164-5
- R. R. Smith, On Banach algebra elements of thin numerical range, Math. Proc. Cambridge Philos. Soc. 86 (1979), no.Β 1, 71β83. MR 530811, DOI 10.1017/S0305004100000645
- R. R. Smith, The numerical range in the second dual of a Banach algebra, Math. Proc. Cambridge Philos. Soc. 89 (1981), no.Β 2, 301β307. MR 600245, DOI 10.1017/S0305004100058187
- R. R. Smith and J. D. Ward, $M$-ideal structure in Banach algebras, J. Functional Analysis 27 (1978), no.Β 3, 337β349. MR 0467316, DOI 10.1016/0022-1236(78)90012-5
- R. R. Smith and J. D. Ward, Applications of convexity and $M$-ideal theory to quotient Banach algebras, Quart. J. Math. Oxford Ser. (2) 30 (1979), no.Β 119, 365β384. MR 545071, DOI 10.1093/qmath/30.3.365
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 233-242
- MSC: Primary 46H99; Secondary 46J99, 47D30
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719668-0
- MathSciNet review: 719668