James maps, Segal maps, and the Kahn-Priddy theorem
HTML articles powered by AMS MathViewer
- by J. Caruso, F. R. Cohen, J. P. May and L. R. Taylor
- Trans. Amer. Math. Soc. 281 (1984), 243-283
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719669-2
- PDF | Request permission
Abstract:
The standard combinatorial approximation $C({R^n},X)$ to ${\Omega ^n}{\Sigma ^n}X$ is a filtered space with easily understood filtration quotients ${D_q}({R^n},X)$. Stably, $C({R^n},X)$ splits as the wedge of the ${D_q}({R^n},X)$. We here analyze the multiplicative properties of the James maps which give rise to the splitting and of various related combinatorially derived maps between iterated loop spaces. The target of the total James map \[ j = (j_q): \Omega ^n \Sigma ^n X \bigtimes _{q \geqslant 0} \Omega ^{2nq} \Sigma ^{2nq} D_q(R^n, X) \] is a ring space, and $j$ is an exponential $H$-map. There is a total Segal map \[ s = \bigtimes _{q \geqslant 0} \;{s_{q}}:\bigtimes _{q \geqslant 0} \;{\Omega ^{2nq}}\,{\Sigma ^{2nq}}{D_q}({R^{n}},X)\; \bigtimes _{q \geqslant 0} \;\Omega ^{3nq}\,\Sigma ^{3nq}{X^{[q]}}\] which is a ring map between ring spaces. There is a total partial power map \[ k = ({k_q}): {\Omega ^{n}}\,{\Sigma ^{n}}X \to \bigtimes _{q \geqslant 0} \;{\Omega ^{n\,q}}\,{\Sigma ^{n\,q}}{X^{[q]}}\] which is an exponential $H$-map. There is a noncommutative binomial theorem for the computation of the smash power ${\Omega ^n}{\Sigma ^n}X \to {\Omega ^{nq}}{\Sigma ^{nq}}{X^{[q]}}$ in terms of the ${k_m}$ for $m \leqslant q$. The composite of $s$ and $j$ agrees with the composite of $k$ and the natural inclusion \[ \bigtimes _{q \geqslant 0} \;{\Omega ^{n\,q}}\,{\Sigma ^{n\,q}}{X^{[q]}} \to \bigtimes _{q \geqslant 0} \,{\Omega ^{3\,n\,q}}\,{\Sigma ^{3\,n\,q}}{X^{[q]}}.\] This analysis applies to essentially arbitrary spaces $X$. When specialized to $X = {S^0}$, it implies an unstable version of the Kahn-Priddy theorem. The exponential property of the James maps leads to an analysis of the behavior of loop addition with respect to the stable splitting of ${\Omega ^n}{\Sigma ^n}X$ when $X$ is connected, and there is an analogous analysis relating loop addition to the stable splitting of $Q({X^ + })$.References
- J. F. Adams, The Kahn-Priddy theorem, Proc. Cambridge Philos. Soc. 73 (1973), 45β55. MR 310878, DOI 10.1017/s0305004100047459
- John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies, No. 90, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978. MR 505692 M. G. Barratt and P. J. Eccles, ${\Gamma ^ + }$-structures. I-III, Topology 13 (1974), 25-45, 113-126, 199-207. J. Caruso, Configuration spaces and mapping spaces, Thesis, Univ. of Chicago, 1979.
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146
- F. R. Cohen, J. P. May, and L. R. Taylor, Splitting of certain spaces $CX$, Math. Proc. Cambridge Philos. Soc. 84 (1978), no.Β 3, 465β496. MR 503007, DOI 10.1017/S0305004100055298
- F. R. Cohen, J. P. May, and L. R. Taylor, Splitting of some more spaces, Math. Proc. Cambridge Philos. Soc. 86 (1979), no.Β 2, 227β236. MR 538744, DOI 10.1017/S0305004100056048
- F. R. Cohen, J. P. May, and L. R. Taylor, $K(\textbf {Z},\,0)$ and $K(Z_{2},\,0)$ as Thom spectra, Illinois J. Math. 25 (1981), no.Β 1, 99β106. MR 602900
- I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170β197. MR 73181, DOI 10.2307/2007107
- Daniel S. Kahn and Stewart B. Priddy, On the transfer in the homology of symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978), no.Β 1, 91β101. MR 464229, DOI 10.1017/S0305004100054323
- Ulrich Koschorke and Brian Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), no.Β 3, 283β290. MR 508891, DOI 10.1016/0040-9383(78)90032-0
- Nicholas J. Kuhn, The geometry of the James-Hopf maps, Pacific J. Math. 102 (1982), no.Β 2, 397β412. MR 686560
- L. Gaunce Lewis Jr., When is the natural map $X\rightarrow \Omega \Sigma X$ a cofibration?, Trans. Amer. Math. Soc. 273 (1982), no.Β 1, 147β155. MR 664034, DOI 10.1090/S0002-9947-1982-0664034-8 P. LΓΆffler and N. Ray, A geometric proof of a theorem of Kahn and Priddy, preprint.
- Mark Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), no.Β 3, 549β559. MR 544245
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- J. P. May, $E_{\infty }$ spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp.Β 61β93. MR 0339152
- J. P. May, Applications and generalizations of the approximation theorem, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp.Β 38β69. MR 561213
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272β280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213β221. MR 331377, DOI 10.1007/BF01390197
- Graeme Segal, Operations in stable homotopy theory, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp.Β 105β110. MR 0339154
- V. P. Snaith, A stable decomposition of $\Omega ^{n}S^{n}X$, J. London Math. Soc. (2) 7 (1974), 577β583. MR 339155, DOI 10.1112/jlms/s2-7.4.577
- Victor Snaith, Localized stable homotopy of some classifying spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981), no.Β 2, 325β330. MR 600247, DOI 10.1017/S0305004100058205
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 243-283
- MSC: Primary 55P35; Secondary 18F25, 19L64, 55P47, 55Q05, 55Q25, 55S15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719669-2
- MathSciNet review: 719669