James maps and $E_{n}$ ring spaces
HTML articles powered by AMS MathViewer
- by F. R. Cohen, J. P. May and L. R. Taylor
- Trans. Amer. Math. Soc. 281 (1984), 285-295
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719670-9
- PDF | Request permission
Abstract:
We parametrize by operad actions the multiplicative analysis of the total James map given by Caruso and ourselves. The target of the total James map \[ j = \sum {{j_q}} :C({R^n},X) \to \prod \limits _{q \geqslant 0} {Q{D_q}({R^n},X)} \] is an ${E_n}$ ring space and $j$ is a ${\mathcal {C}_n}$-map, where ${\mathcal {C}_n}$ is the little $n$-cubes operad. This implies that $j$ has an $n$-fold delooping with domain ${\Sigma ^n}X$. It also implies an algorithm for the calculation of ${j_{\ast }}$ and thus of each ${({j_q})_{\ast }}$ on $\bmod p$ homology. When $n = \infty$ and $p = 2$, this algorithm is the essential starting point for Kuhnโs proof of the Whitehead conjecture.References
- J. Caruso, Configuration spaces and mapping spaces, Thesis, Univ. of Chicago, 1979.
- J. Caruso, F. R. Cohen, J. P. May, and L. R. Taylor, James maps, Segal maps, and the Kahn-Priddy theorem, Trans. Amer. Math. Soc. 281 (1984), no.ย 1, 243โ283. MR 719669, DOI 10.1090/S0002-9947-1984-0719669-2
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- F. R. Cohen, J. P. May, and L. R. Taylor, Splitting of certain spaces $CX$, Math. Proc. Cambridge Philos. Soc. 84 (1978), no.ย 3, 465โ496. MR 503007, DOI 10.1017/S0305004100055298
- Ralph L. Cohen, Stable proofs of stable splittings, Math. Proc. Cambridge Philos. Soc. 88 (1980), no.ย 1, 149โ151. MR 569640, DOI 10.1017/S030500410005742X
- Nicholas J. Kuhn, The homology of the James-Hopf maps, Illinois J. Math. 27 (1983), no.ย 2, 315โ333. MR 694646
- Nicholas J. Kuhn, A Kahn-Priddy sequence and a conjecture of G. W. Whitehead, Math. Proc. Cambridge Philos. Soc. 92 (1982), no.ย 3, 467โ483. MR 677471, DOI 10.1017/S0305004100060175 L. G. Lewis, Jr., J. P. May, J. McClure and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes in Math. (to appear).
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- J. P. May, $E_{\infty }$ spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp.ย 61โ93. MR 0339152
- J. Peter May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jรธrgen Tornehave. MR 0494077
- J. P. May, Pairings of categories and spectra, J. Pure Appl. Algebra 19 (1980), 299โ346. MR 593258, DOI 10.1016/0022-4049(80)90105-X
- J. P. May, Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982), no.ย 1, 1โ69. MR 669843, DOI 10.1016/0022-4049(82)90029-9
- Richard Steiner, A canonical operad pair, Math. Proc. Cambridge Philos. Soc. 86 (1979), no.ย 3, 443โ449. MR 542690, DOI 10.1017/S0305004100056292
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 285-295
- MSC: Primary 55P35; Secondary 55P47, 55Q25, 55S12
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719670-9
- MathSciNet review: 719670