A two weight weak type inequality for fractional integrals
Author:
Eric Sawyer
Journal:
Trans. Amer. Math. Soc. 281 (1984), 339-345
MSC:
Primary 26A33; Secondary 26D10, 26D15, 42B25
DOI:
https://doi.org/10.1090/S0002-9947-1984-0719674-6
MathSciNet review:
719674
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For and
nonnegative weight functions on
we show that the weak type inequality


![$\displaystyle \int_Q\,[{T_\alpha }({\chi_Q}w)\,(x)]^{p'}\upsilon (x)^{1 - p'}\,dx \leqslant B\left( \int_Qw \right)^{p^{\prime}/q^{\prime}} < \infty $](images/img8.gif)






- [1] David R. Adams, On the existence of capacitary strong type estimates in 𝑅ⁿ, Ark. Mat. 14 (1976), no. 1, 125–140. MR 417774, https://doi.org/10.1007/BF02385830
- [2] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839. MR 303226, https://doi.org/10.1073/pnas.69.10.2838
- [3] Björn E. J. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), no. 2, 257–268. MR 523103, https://doi.org/10.1512/iumj.1979.28.28018
- [4] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, https://doi.org/10.1007/BF02394567
- [5] Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77–102. MR 567435, https://doi.org/10.7146/math.scand.a-11827
- [6] R. Kerman and E. Sawyer, Weighted norm inequalities of trace-type for potential operators, preprint.
- [7] V. G. Maz'ya, On some integral inequalities for functions of several variables, Problems in Math. Analysis, No. 3, Leningrad Univ. (Russian)
- [8] Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, https://doi.org/10.1090/S0002-9947-1974-0340523-6
- [9] Eric Sawyer, Multipliers of Besov and power-weighted 𝐿² spaces, Indiana Univ. Math. J. 33 (1984), no. 3, 353–366. MR 740955, https://doi.org/10.1512/iumj.1984.33.33020
- [10] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A33, 26D10, 26D15, 42B25
Retrieve articles in all journals with MSC: 26A33, 26D10, 26D15, 42B25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1984-0719674-6
Article copyright:
© Copyright 1984
American Mathematical Society