Generalized Hua-operators and parabolic subgroups. The cases of $\textrm {SL}(n, \textbf {C})$ and $\textrm {SL}(n, \textbf {R})$
HTML articles powered by AMS MathViewer
- by Kenneth D. Johnson
- Trans. Amer. Math. Soc. 281 (1984), 417-429
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719678-3
- PDF | Request permission
Abstract:
Suppose $G = {\text {SL}}(n,{\mathbf {C}})$ or ${\text {SL}}(n,{\mathbf {R}})$ and $K$ is a maximal compact subgroup of $G$. If $P$ is any parabolic subgroup of $G$, we determine a system of differential equations on $G/K$ with the property that any function on $G/K$ satisfies these differential equations if and only if it is the Poisson integral of a hyperfunction on $G/P$.References
- Nicole Berline and Michèle Vergne, Équations de Hua et intégrales de Poisson, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 3, A123–A125 (French, with English summary). MR 563956 —, Equations du Hua et noyau de Poisson, Lecture Notes in Math., vol. 880, Springer-Verlag, Berlin and New York, 1981, pp. 1-51.
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936, DOI 10.1090/mmono/006
- Kenneth D. Johnson, Differential equations and the Bergman-Šilov boundary on the Siegel upper half plane, Ark. Mat. 16 (1978), no. 1, 95–108. MR 499140, DOI 10.1007/BF02385985
- Kenneth D. Johnson and Adam Korányi, The Hua operators on bounded symmetric domains of tube type, Ann. of Math. (2) 111 (1980), no. 3, 589–608. MR 577139, DOI 10.2307/1971111
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39. MR 485861, DOI 10.2307/1971253
- Adam Korányi, Poisson integrals and boundary components of symmetric spaces, Invent. Math. 34 (1976), no. 1, 19–35. MR 425197, DOI 10.1007/BF01418969
- A. Korányi and P. Malliavin, Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two, Acta Math. 134 (1975), no. 3-4, 185–209. MR 410278, DOI 10.1007/BF02392101
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470 M. Lasalle, C. R. Acad. Sci. Paris 294 (1982). —, C. R. Acad. Sci. Paris 294 (1982).
- Hans Maass, Siegel’s modular forms and Dirichlet series, Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin-New York, 1971. Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday. MR 0344198, DOI 10.1007/BFb0058625
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 417-429
- MSC: Primary 22E46; Secondary 22E30, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1984-0719678-3
- MathSciNet review: 719678