The $\bar \partial$-Neumann solution to the inhomogeneous Cauchy-Riemann equation in the ball in $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer
- by F. Reese Harvey and John C. Polking
- Trans. Amer. Math. Soc. 281 (1984), 587-613
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722764-5
- PDF | Request permission
Abstract:
Let $\vartheta$ denote the formal adjoint of the Cauchy-Riemann operator $\overline \partial$ on ${{\mathbf {C}}^n}$, and let $N$ denote the Kohn-Neumann operator on the unit ball in ${{\mathbf {C}}^n}$. The operator $\vartheta \; \circ \;N$ provides a natural fundamental solution for $\overline \partial f = g$ on the ball. It is our purpose to present the kernel $P$ for this operator $\vartheta \; \circ \;N$ explicitly—the coefficients are exhibited as rational functions.References
- Philippe Charpentier, Formules explicites pour les solutions minimales de l’équation $\bar \partial u=f$ dans la boule et dans le polydisque de $\textbf {C}^{n}$, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 121–154 (French). MR 599627, DOI 10.5802/aif.811
- Jiri Dadok and Reese Harvey, The fundamental solution for the Kohn-Laplacian $cm_{\textrm {b}}$ on the sphere in $\textbf {C}^{n}$, Math. Ann. 244 (1979), no. 2, 89–104. MR 550841, DOI 10.1007/BF01420485
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- P. C. Greiner and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem, Mathematical Notes, No. 19, Princeton University Press, Princeton, N.J., 1977. MR 0499319
- G. M. Henkin, Solutions with bounds for the equations of H. Lewy and Poincaré-Lelong. Construction of functions of Nevanlinna class with given zeros in a strongly pseudoconvex domain, Dokl. Akad. Nauk SSSR 224 (1975), no. 4, 771–774 (Russian). MR 0466634
- G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
- Reese Harvey and John Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46 (1979), no. 2, 253–300. MR 534054
- F. R. Harvey and J. C. Polking, The $\bar \partial$-Neumann kernel in the ball in $\textbf {C}^{n}$, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 117–136. MR 740876, DOI 10.1090/pspum/041/740876
- A. V. Romanov and G. M. Henkin, Exact Hölder estimates of the solutions of the $\bar \delta$-equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183 (Russian). MR 0293121
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- Steven G. Krantz, Estimates for integral kernels of mixed type, fractional integration operators, and optimal estimates for the $\bar \partial$ operator, Manuscripta Math. 30 (1979/80), no. 1, 21–52. MR 552362, DOI 10.1007/BF01305989
- Nils Øvrelid, Integral representation formulas and $L^{p}$-estimates for the $\bar \partial$-equation, Math. Scand. 29 (1971), 137–160. MR 324073, DOI 10.7146/math.scand.a-11041
- D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554–1558. MR 526179, DOI 10.1073/pnas.76.4.1554
- Henri Skoda, Valeurs au bord pour les solutions de l’opérateur $d''$, et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), no. 3, 225–299 (French). MR 450620, DOI 10.24033/bsmf.1827
- Nancy K. Stanton, The solution of the $\bar \partial$-Neumann problem in a strictly pseudoconvex Siegel domain, Invent. Math. 65 (1981/82), no. 1, 137–174. MR 636884, DOI 10.1007/BF01389299
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 587-613
- MSC: Primary 32A25; Secondary 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722764-5
- MathSciNet review: 722764