A minimal model for $\neg \textrm {CH}$: iteration of Jensen’s reals
HTML articles powered by AMS MathViewer
- by Uri Abraham
- Trans. Amer. Math. Soc. 281 (1984), 657-674
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722767-0
- PDF | Request permission
Abstract:
A model of ${\text {ZFC}} + {2^{\aleph _0}} = {\aleph _2}$ is constructed which is minimal with respect to being a model of $\neg {\text {CH}}$. Any strictly included submodel of ${\text {ZF}}$ (which contains all the ordinals) satisfies ${\text {CH}}$. In this model the degrees of constructibility have order type ${\omega _2}$. A novel method of using the diamond is applied here to construct a countable-support iteration of Jensen’s reals: In defining the $\alpha {\text {th}}$ stage of the iteration the diamond "guesses" possible $\beta > \alpha$ stages of the iteration.References
- James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288. MR 556894, DOI 10.1016/0003-4843(79)90010-X
- Keith J. Devlin and Håvard Johnsbråten, The Souslin problem, Lecture Notes in Mathematics, Vol. 405, Springer-Verlag, Berlin-New York, 1974. MR 0384542, DOI 10.1007/BFb0065979 M. J. Groszek, Iterated perfect set forcing and degrees of constructibility, Thesis, Harvard University, Cambridge, Mass., 1981.
- Ronald Jensen, Definable sets of minimal degree, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 122–128. MR 0306002
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- Arnold W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), no. 3, 575–584. MR 716618, DOI 10.2307/2273449
- Gerald E. Sacks, Forcing with perfect closed sets, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331–355. MR 0276079
- Saharon Shelah, Models with second order properties. III. Omitting types for $L(Q)$, Arch. Math. Logik Grundlag. 21 (1981), no. 1-2, 1–11. MR 625527, DOI 10.1007/BF02011630
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 657-674
- MSC: Primary 03E35; Secondary 03C62, 03E45, 03E50
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722767-0
- MathSciNet review: 722767