Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Hyeong In Choi
- Trans. Amer. Math. Soc. 281 (1984), 691-716
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722769-4
- PDF | Request permission
Abstract:
We define the asymptotic Dirichlet problem and give a sufficient condition for solving it. This proves an existence of nontrivial bounded harmonic functions on certain classes of noncompact complete Riemannian manifolds.References
- L. Ahlfors, Sur le type d’une surface de Riemann, C. R. Acad. Sci. Paris 201 (1935), 30-32.
- Michael T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721 (1984). MR 730923
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- S. Alexander, Locally convex hypersurfaces of negatively curved spaces, Proc. Amer. Math. Soc. 64 (1977), no. 2, 321–325. MR 448262, DOI 10.1090/S0002-9939-1977-0448262-6
- Richard L. Bishop, Infinitesimal convexity implies local convexity, Indiana Univ. Math. J. 24 (1974/75), 169–172. MR 350662, DOI 10.1512/iumj.1974.24.24014
- Shiu Yuen Cheng, Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 147–151. MR 573431
- Hyeong In Choi, On the Liouville theorem for harmonic maps, Proc. Amer. Math. Soc. 85 (1982), no. 1, 91–94. MR 647905, DOI 10.1090/S0002-9939-1982-0647905-3
- Hyeong In Choi, Characterizations of simply connected rotationally symmetric manifolds, Trans. Amer. Math. Soc. 275 (1983), no. 2, 723–727. MR 682727, DOI 10.1090/S0002-9947-1983-0682727-4 —, Thesis, Univ. of California, Berkeley, June 1982.
- Patrick Eberlein, Geodesics and ends in certain surfaces without conjugate points, Mem. Amer. Math. Soc. 13 (1978), no. 199, iv+111. MR 482449, DOI 10.1090/memo/0199
- Patrick Eberlein, Surfaces of nonpositive curvature, Mem. Amer. Math. Soc. 20 (1979), no. 218, x+90. MR 533654, DOI 10.1090/memo/0218
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- Robert Finn, On a class of conformal metrics, with application to differential geometry in the large, Comment. Math. Helv. 40 (1965), 1–30. MR 203618, DOI 10.1007/BF02564362
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983
- R. E. Greene and H. Wu, On a new gap phenomenon in Riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 2, 714–715. MR 648065, DOI 10.1073/pnas.79.2.714
- D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Großen, Lecture Notes in Mathematics, Vol. 55, Springer-Verlag, Berlin-New York, 1975 (German). Zweite Auflage. MR 0365399
- S. Hildebrandt, J. Jost, and K.-O. Widman, Harmonic mappings and minimal submanifolds, Invent. Math. 62 (1980/81), no. 2, 269–298. MR 595589, DOI 10.1007/BF01389161
- Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. MR 94452, DOI 10.1007/BF02564570 A. Markushevich, Theory of functions of a complex variable, vol. 2, Chelsea, New York, 1967.
- John Milnor, On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly 84 (1977), no. 1, 43–46. MR 428232, DOI 10.2307/2318308
- Dennis Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differential Geom. 18 (1983), no. 4, 723–732 (1984). MR 730924
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
- Paul Yang, Curvatures of complex submanifolds of $\textbf {C}^{n}$, J. Differential Geometry 12 (1977), no. 4, 499–511 (1978). MR 512921
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 691-716
- MSC: Primary 53C20; Secondary 31C12, 58G99
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722769-4
- MathSciNet review: 722769