Supercompactness of compactifications and hyperspaces
HTML articles powered by AMS MathViewer
- by Murray G. Bell
- Trans. Amer. Math. Soc. 281 (1984), 717-724
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722770-0
- PDF | Request permission
Abstract:
We prove a theorem which implies that if $\gamma \omega$ is a supercompact compactification of the countable discrete space $\omega$ then $\gamma \omega - \omega$ is separable. This improves an earlier result of the author’s that such a $\gamma \omega$ must have $\gamma \omega - \omega \;{\text {ccc}}$. We prove a theorem which implies that the hyperspace of closed subsets of ${2^{\omega _2}}$ is not a continuous image of a supercompact space. This improves an earlier result of ${\text {L}}$. Šapiro that the hyperspace of closed subsets of ${2^{\omega _2}}$ is not dyadic.References
- P. Alexandroff, Zur Theorie der topologischen Räume, C. R. (Doklady) Acad. Sci. URSS 11 (1936), 55-58.
- Murray G. Bell, A cellular constraint in supercompact Hausdorff spaces, Canadian J. Math. 30 (1978), no. 6, 1144–1151. MR 511552, DOI 10.4153/CJM-1978-095-7
- Murray G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11–25 (1981). MR 624458 —, Two Boolean algebras with extreme cellular and compactness properties, preprint.
- Murray G. Bell and Jan van Mill, The compactness number of a compact topological space. I, Fund. Math. 106 (1980), no. 3, 163–173. MR 584490, DOI 10.4064/fm-106-3-163-173
- Eric K. van Douwen, Mappings from hyperspaces and convergent sequences, Topology Appl. 34 (1990), no. 1, 35–45. MR 1035458, DOI 10.1016/0166-8641(90)90087-I
- Eric van Douwen and Jan van Mill, Supercompact spaces, Topology Appl. 13 (1982), no. 1, 21–32. MR 637424, DOI 10.1016/0166-8641(82)90004-9
- B. Efimov, The imbedding of the Stone-Čech compactifications of discrete spaces into bicompacta, Dokl. Akad. Nauk SSSR 189 (1969), 244–246 (Russian). MR 0253290
- J. Flachsmeyer, H. Poppe, and F. Terpe (eds.), Contributions to extension theory of topological structures, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969. MR 0244955 I. Juhász, Cardinal functions in topology—ten years later, Math. Centre Tracts, No. 123, Mathematisch Centrum, Amsterdam, 1980.
- J. van Mill, Supercompactness and Wallman spaces, Mathematical Centre Tracts, No. 85, Mathematisch Centrum, Amsterdam, 1977. MR 0464160
- Charles F. Mills and Jan van Mill, A nonsupercompact continuous image of a supercompact space, Houston J. Math. 5 (1979), no. 2, 241–247. MR 546758
- S. Mrówka, Mazur theorem and $m$-adic spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 299–305 (English, with Russian summary). MR 264613 L. B. S̄ S. Sirota, Spectral representation of spaces of closed subsets of bicompacta, Soviet Math. Dokl. 9 (1968), 997-1000.
- Leopold Vietoris, Bereiche zweiter Ordnung, Monatsh. Math. Phys. 32 (1922), no. 1, 258–280 (German). MR 1549179, DOI 10.1007/BF01696886
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 717-724
- MSC: Primary 54D30; Secondary 54B20
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722770-0
- MathSciNet review: 722770