Approximation in the mean by solutions of elliptic equations
HTML articles powered by AMS MathViewer
- by Thomas Bagby
- Trans. Amer. Math. Soc. 281 (1984), 761-784
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722773-6
- PDF | Request permission
Abstract:
A result analogous to the Vituškin approximation theorem is proved for mean approximation by solutions of certain elliptic equations.References
- David R. Adams and John C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534. MR 328109, DOI 10.1090/S0002-9939-1973-0328109-5 I. Babuska, Stability of the domain with respect to the fundamental problems in the theory of partial differential equations, mainly in connection with the theory of elasticity. I, II, Czechoslovak Math. J. 11 (86) (1961), 76-105, 165-203. (Russian)
- Thomas Bagby, Quasi topologies and rational approximation, J. Functional Analysis 10 (1972), 259–268. MR 0355058, DOI 10.1016/0022-1236(72)90025-0
- V. I. Burenkov, The approximation of functions in the space $W_{p}^{r}(\Omega )$ by compactly supported functions for an arbitrary open set $\Omega$, Trudy Mat. Inst. Steklov. 131 (1974), 51–63, 245 (Russian). Studies in the theory of differentiable functions of several variables and its applications, V. MR 0367643 A. P. Calderón, Lecture notes on pseudo differential operators and elliptic boundary value problems, Cursos de Matemática 1, Instituto Argentino de Matematica, Buenos Aires, 1976.
- Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
- Claes Fernström and John C. Polking, Bounded point evaluations and approximation in $L^{p}$ by solutions of elliptic partial differential equations, J. Functional Analysis 28 (1978), no. 1, 1–20. MR 0481468, DOI 10.1016/0022-1236(78)90077-0
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Reese Harvey and John C. Polking, A notion of capacity which characterizes removable singularities, Trans. Amer. Math. Soc. 169 (1972), 183–195. MR 306740, DOI 10.1090/S0002-9947-1972-0306740-4
- Reese Harvey and John C. Polking, A Laurent expansion for solutions to elliptic equations, Trans. Amer. Math. Soc. 180 (1973), 407–413. MR 320494, DOI 10.1090/S0002-9947-1973-0320494-8
- V. P. Havin, Approximation by analytic functions in the mean, Dokl. Akad. Nauk SSSR 178 (1968), 1025–1028 (Russian). MR 0224830
- Lars Inge Hedberg, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163 (1972), 157–171. MR 432886, DOI 10.1090/S0002-9947-1972-0432886-6
- Lars Inge Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299–319. MR 328088, DOI 10.1007/BF01181619
- Lars Inge Hedberg, Approximation in the mean by solutions of elliptic equations, Duke Math. J. 40 (1973), 9–16. MR 312071
- Lars Inge Hedberg, Removable singularities and condenser capacities, Ark. Mat. 12 (1974), 181–201. MR 361050, DOI 10.1007/BF02384755
- Lars Inge Hedberg, Two approximation problems in function spaces, Ark. Mat. 16 (1978), no. 1, 51–81. MR 499137, DOI 10.1007/BF02385982
- Lars Inge Hedberg, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981), no. 3-4, 237–264. MR 639040, DOI 10.1007/BF02392874 L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory (to appear). L. Hörmander, Linear partial differential operators, Academic Press, New York, 1963.
- Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. MR 0075429
- M. V. Keldych, On the solubility and the stability of Dirichlet’s problem, Uspekhi Matem. Nauk 8 (1941), 171–231 (Russian). MR 0005249
- P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 747–766. MR 86991, DOI 10.1002/cpa.3160090407
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027 P. Lindberg, $L^p$-approximation by analytic functions in an open region, Uppsala Univ. Dept. of Math. Report No. 1977:7.
- Per Lindberg, A constructive method for $L^{p}$-approximation by analytic functions, Ark. Mat. 20 (1982), no. 1, 61–68. MR 660125, DOI 10.1007/BF02390498
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- V. G. Maz′ja, The $(p,\,l)$-capacity, imbedding theorems and the spectrum of a selfadjoint elliptic operator, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 356–385 (Russian). MR 0338766 S. N. Mergeljan, Uniform approximations to functions of a complex variable, Uspehi Mat. Nauk 7 (1952), 31-122; English transl., Amer. Math. Soc. Transl. (1) 101 (1954).
- A. G. O’Farrell, Metaharmonic approximation in Lipschitz norms, Proc. Roy. Irish Acad. Sect. A 75 (1975), no. 24, 317–330. MR 402372
- John C. Polking, Approximation in $L^{p}$ by solutions of elliptic partial differential equations, Amer. J. Math. 94 (1972), 1231–1244. MR 324215, DOI 10.2307/2373572
- John C. Polking, A Leibniz formula for some differentiation operators of fractional order, Indiana Univ. Math. J. 21 (1971/72), 1019–1029. MR 318868, DOI 10.1512/iumj.1972.21.21082
- C. Runge, Zur Theorie der Eindeutigen Analytischen Functionen, Acta Math. 6 (1885), no. 1, 229–244 (German). MR 1554664, DOI 10.1007/BF02400416
- È. M. Saak, A capacity criterion for a domain with a stable Dirichlet problem for higher order elliptic equations, Mat. Sb. (N.S.) 100(142) (1976), no. 2, 201–209, 335 (Russian). MR 0412592
- Georgi E. Shilov, Generalized functions and partial differential equations, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1968. Authorized English edition revised by the author; Translated and edited by Bernard D. Seckler. MR 0230129
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
- Barnet M. Weinstock, Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc. 41 (1973), 513–517. MR 340794, DOI 10.1090/S0002-9939-1973-0340794-0
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 761-784
- MSC: Primary 31B35; Secondary 31B15, 35J99
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722773-6
- MathSciNet review: 722773