Invariant densities for random maps of the interval
HTML articles powered by AMS MathViewer
- by S. Pelikan
- Trans. Amer. Math. Soc. 281 (1984), 813-825
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722776-1
- PDF | Request permission
Abstract:
A random map is a discrete time process in which one of a number of functions is selected at random and applied. Here we study random maps of $[0,1]$ which represent dynamical systems on the square $[0,1] \times [0,1]$. Sufficient conditions for a random map to have an absolutely continuous invariant measure are given, and the number of ergodic components of a random map is discussed.References
- L. M. Abramov and V. A. Rohlin, The entropy of a skew product of measure-preserving transformations, Amer. Math. Soc. Transl. (2) 48 (1965), 255-265.
N. Dunford and J. T. Schwartz, Linear operators. I, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958.
- Gerhard Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), no. 4, 313–333. MR 685377, DOI 10.1007/BF01667385
- Tien Yien Li and James A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183–192. MR 457679, DOI 10.1090/S0002-9947-1978-0457679-0
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- C. T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d’opérations non complètement continues, Ann. of Math. (2) 52 (1950), 140–147 (French). MR 37469, DOI 10.2307/1969514
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 813-825
- MSC: Primary 58F11; Secondary 28D05, 58F13
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722776-1
- MathSciNet review: 722776