A property of complete minimal surfaces
HTML articles powered by AMS MathViewer
- by Thomas Hasanis and Dimitri Koutroufiotis
- Trans. Amer. Math. Soc. 281 (1984), 833-843
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722778-5
- PDF | Request permission
Abstract:
If $M$ is a complete minimal surface in ${R^n}$, we denote by $W$ the set of points in ${R^n}$ that do not lie on any tangent plane of $M$. By taking a point in $W$ as origin, the position vector of $M$ determines a global unit normal vector field $e$ to $M$. We prove that if $e$ is a minimal section, then $M$ is a plane. In particular, the set of tangent planes of a nonflat complete minimal surface in ${R^3}$ covers all ${R^3}$. We also prove a similar result for a complete minimal surface $M$ in ${S^3}$, and deduce from it that if the spherical image of $M$ lies in a closed hemisphere, then $M$ is a great ${S^2}$.References
- Bang-yen Chen, Geometry of submanifolds, Pure and Applied Mathematics, No. 22, Marcel Dekker, Inc., New York, 1973. MR 0353212
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- Ennio De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 19 (1965), 79–85 (Italian). MR 178385
- Benjamin Halpern, On the immersion of an $n$-dimensional manifold in $n+1$-dimensional Euclidean space, Proc. Amer. Math. Soc. 30 (1971), 181–184. MR 286116, DOI 10.1090/S0002-9939-1971-0286116-3 D. A. Hoffman, R. Osserman and R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in ${R^3}$ and ${R^4}$ (typescript).
- John A. Little, On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl. (4) 83 (1969), 261–335. MR 271970, DOI 10.1007/BF02411172
- Katsumi Nomizu and Brian Smyth, On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comment. Math. Helv. 44 (1969), 484–490. MR 257939, DOI 10.1007/BF02564548 A. V. Pogorelov, On minimal hypersurfaces in spherical space, Soviet Math. Dokl. 13 (1972), 1218-1219.
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Brian Smyth, Submanifolds of constant mean curvature, Math. Ann. 205 (1973), 265–280. MR 334102, DOI 10.1007/BF01362697
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 281 (1984), 833-843
- MSC: Primary 53C42; Secondary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-1984-0722778-5
- MathSciNet review: 722778