The generalized Zahorski class structure of symmetric derivatives
HTML articles powered by AMS MathViewer
- by Lee Larson
- Trans. Amer. Math. Soc. 282 (1984), 45-58
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728702-3
- PDF | Request permission
Abstract:
A generalized Zahorski class structure is demonstrated for symmetric derivatives. A monotonicity theorem is proved and a condition sufficient to ensure that a symmetric derivative has the Darboux property is presented.References
- C. L. Belna, M. J. Evans, and P. D. Humke, Symmetric and ordinary differentiation, Proc. Amer. Math. Soc. 72 (1978), no. 2, 261–267. MR 507319, DOI 10.1090/S0002-9939-1978-0507319-2
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448
- M. J. Evans, A symmetric condition for monotonicity, Bull. Inst. Math. Acad. Sinica 6 (1978), no. 1, 85–91. MR 499025
- K. M. Garg, On a new definition of derivative, Bull. Amer. Math. Soc. 82 (1976), no. 5, 768–770. MR 409734, DOI 10.1090/S0002-9904-1976-14157-2 A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), 212-279.
- N. K. Kundu, On symmetric derivatives and on properties of Zahorski, Czechoslovak Math. J. 26(101) (1976), no. 1, 154–160. MR 399377
- Lee Larson, The symmetric derivative, Trans. Amer. Math. Soc. 277 (1983), no. 2, 589–599. MR 694378, DOI 10.1090/S0002-9947-1983-0694378-6
- Clifford E. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527–536. MR 335703, DOI 10.1512/iumj.1973.23.23044
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 282 (1984), 45-58
- MSC: Primary 26A24
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728702-3
- MathSciNet review: 728702