## Group-graded rings, smash products, and group actions

HTML articles powered by AMS MathViewer

- by M. Cohen and S. Montgomery
- Trans. Amer. Math. Soc.
**282**(1984), 237-258 - DOI: https://doi.org/10.1090/S0002-9947-1984-0728711-4
- PDF | Request permission

Addendum: Trans. Amer. Math. Soc.

**300**(1987), 810-811.

## Abstract:

Let $A$ be a $k$-algebra graded by a finite group $G$, with ${A_1}$ the component for the identity element of $G$. We consider such a grading as a “coaction” by $G$, in that $A$ is a $k{[G]^ \ast }$-module algebra. We then study the smash product $A\# k{[G]^ \ast }$; it plays a role similar to that played by the skew group ring $R \ast G$ in the case of group actions, and enables us to obtain results relating the modules over $A, {A_1}$, and $A\# k{[G]^ \ast }$. After giving algebraic versions of the Duality Theorems for Actions and Coactions (results coming from von Neumann algebras), we apply them to study the prime ideals of $A$ and ${A_1}$. In particular we generalize Lorenz and Passman’s theorem on incomparability of primes in crossed products. We also answer a question of Bergman on graded Jacobson radicals.## References

- S. A. Amitsur,
*Rings of quotients and Morita contexts*, J. Algebra**17**(1971), 273–298. MR**414604**, DOI 10.1016/0021-8693(71)90034-2
G. Bergman, - S. U. Chase, D. K. Harrison, and Alex Rosenberg,
*Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc.**52**(1965), 15–33. MR**195922** - Miriam Cohen,
*A Morita context related to finite automorphism groups of rings*, Pacific J. Math.**98**(1982), no. 1, 37–54. MR**644936** - Miriam Cohen and Louis H. Rowen,
*Group graded rings*, Comm. Algebra**11**(1983), no. 11, 1253–1270. MR**696990**, DOI 10.1080/00927878308822904 - Everett C. Dade,
*Group-graded rings and modules*, Math. Z.**174**(1980), no. 3, 241–262. MR**593823**, DOI 10.1007/BF01161413 - Carl Faith,
*Algebra: rings, modules and categories. I*, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973. MR**0366960** - J. M. G. Fell,
*Induced representations and Banach $^*$-algebraic bundles*, Lecture Notes in Mathematics, Vol. 582, Springer-Verlag, Berlin-New York, 1977. With an appendix due to A. Douady and L. Dal Soglio-Hérault. MR**0457620** - John R. Fisher,
*A Jacobson radical for Hopf module algebras*, J. Algebra**34**(1975), 217–231. MR**366963**, DOI 10.1016/0021-8693(75)90180-5 - Joe W. Fisher and Susan Montgomery,
*Semiprime skew group rings*, J. Algebra**52**(1978), no. 1, 241–247. MR**480616**, DOI 10.1016/0021-8693(78)90272-7 - I. N. Herstein,
*Noncommutative rings*, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR**0227205** - A. Joseph and L. W. Small,
*An additivity principle for Goldie rank*, Israel J. Math.**31**(1978), no. 2, 105–114. MR**516246**, DOI 10.1007/BF02760541 - Magnus B. Landstad,
*Duality for dual covariance algebras*, Comm. Math. Phys.**52**(1977), no. 2, 191–202. MR**450456** - Martin Lorenz and D. S. Passman,
*Prime ideals in crossed products of finite groups*, Israel J. Math.**33**(1979), no. 2, 89–132. MR**571248**, DOI 10.1007/BF02760553 - Martin Lorenz, Susan Montgomery, and L. W. Small,
*Prime ideals in fixed rings. II*, Comm. Algebra**10**(1982), no. 5, 449–455. MR**647831**, DOI 10.1080/00927878208822728 - Susan Montgomery,
*Fixed rings of finite automorphism groups of associative rings*, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR**590245** - Susan Montgomery,
*Prime ideals in fixed rings*, Comm. Algebra**9**(1981), no. 4, 423–449. MR**605031**, DOI 10.1080/00927878108822591 - Yoshiomi Nakagami,
*Dual action on a von Neumann algebra and Takesaki’s duality for a locally compact group*, Publ. Res. Inst. Math. Sci.**12**(1976/77), no. 3, 727–775. MR**0458190**, DOI 10.2977/prims/1195190377 - Yoshiomi Nakagami and Masamichi Takesaki,
*Duality for crossed products of von Neumann algebras*, Lecture Notes in Mathematics, vol. 731, Springer, Berlin, 1979. MR**546058** - Constantin Năstăsescu,
*Strongly graded rings of finite groups*, Comm. Algebra**11**(1983), no. 10, 1033–1071. MR**700723**, DOI 10.1080/00927872.1983.10487600 - W. K. Nicholson and J. F. Watters,
*Normal radicals and normal classes of rings*, J. Algebra**59**(1979), no. 1, 5–15. MR**541666**, DOI 10.1016/0021-8693(79)90148-0 - Donald S. Passman,
*The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR**0470211** - D. S. Passman,
*Fixed rings and integrality*, J. Algebra**68**(1981), no. 2, 510–519. MR**608548**, DOI 10.1016/0021-8693(81)90277-5
—, - Gert K. Pedersen,
*$C^{\ast }$-algebras and their automorphism groups*, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR**548006** - Şerban Strătilă, Dan Voiculescu, and Laszló Zsidó,
*On crossed products. I*, Rev. Roumaine Math. Pures Appl.**21**(1976), no. 10, 1411–1449. MR**500193** - Moss E. Sweedler,
*Hopf algebras*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR**0252485** - Masamichi Takesaki,
*Duality for crossed products and the structure of von Neumann algebras of type III*, Acta Math.**131**(1973), 249–310. MR**438149**, DOI 10.1007/BF02392041

*Groups acting on rings, group graded rings, and beyond*(preprint). —,

*On Jacobson radicals of graded rings*(preprint).

*It’s essentially Maschke’s theorem*, Rocky Mountain J. Math.

**13**(1978), 37-54.

## Bibliographic Information

- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**282**(1984), 237-258 - MSC: Primary 16A03; Secondary 16A12, 16A24, 16A66, 16A72, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728711-4
- MathSciNet review: 728711