Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Positive solutions of nonlinear elliptic equations—existence and nonexistence of solutions with radial symmetry in $L_{p}(\textbf {R}^{N})$
HTML articles powered by AMS MathViewer

by J. F. Toland PDF
Trans. Amer. Math. Soc. 282 (1984), 335-354 Request permission

Abstract:

It is shown that when $r$ is nonincreasing, radially symmetric, continuous and bounded below by a positive constant, the solution set of the nonlinear elliptic eigenvalue problem \[ - \Delta u = \lambda u + r{u^{1 + \sigma }},\qquad u > 0\qquad {\text {on}} {\mathbf {R}^N},\qquad u \to 0\qquad {\text {as}} {\text {|x|}} \to \infty \], contains a continuum $\mathcal {C}$ of nontrivial solutions which is unbounded in $\mathbf {R} \times {L_p}({\mathbf {R}^N})$ for all $p \geq 1$. Various estimates of the ${L_p}$ norm of $u$ are obtained which depend on the relative values of $\sigma$ and $p$, and the Pohozaev and Sobolev embedding constants.
References
  • C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal. 76 (1981), no. 1, 9–95. MR 629699, DOI 10.1007/BF00250799
  • C. J. Amick and J. F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip—global theory of bifurcation and asymptotic bifurcation, Math. Ann. 262 (1983), no. 3, 313–342. MR 692860, DOI 10.1007/BF01456013
  • H. Berestycki and P.-L. Lions, Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans $\textbf {R}^{N}$, J. Analyse Math. 38 (1980), 144–187 (French). MR 600785, DOI 10.1007/BF03033880
  • H. Berestycki, P.-L. Lions, and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\textbf {R}^{N}$, Indiana Univ. Math. J. 30 (1981), no. 1, 141–157. MR 600039, DOI 10.1512/iumj.1981.30.30012
  • Haïm Brézis, Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981) Res. Notes in Math., vol. 70, Pitman, Boston, Mass.-London, 1982, pp. 129–146. MR 670270
  • B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125
  • B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\textbf {R}^{n}$, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402. MR 634248
  • B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
  • —, A priori bounds for positive solutions of nonlinear equations, Comm. Partial Differential Equations (1981), 883-901. S. I. Pohozaev, Eigenfunctions of the equations $\Delta u + \lambda \,f(u) = 0$, Soviet Math. Dokl. 5 (1965), 1408-1411.
  • Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
  • Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
  • C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), no. 1, 169–192. MR 662670, DOI 10.1112/plms/s3-45.1.169
  • —, Bifurcation from the continuous spectrum in the ${L_2}$-theory of elliptic equations in ${\mathbf {R}^N}$, (Lectures at S.A.F.A. IV, Naples, 1980), Recent Methods in Nonlinear Analysis and Applications, Liguori, Naples, 1981.
  • J. F. Toland, Global bifurcation for Neumann problems without eigenvalues, J. Differential Equations 44 (1982), no. 1, 82–110. MR 651688, DOI 10.1016/0022-0396(82)90026-2
  • J. F. Toland, Solitary wave solutions for a model of the two-way propagation of water waves in a channel, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 343–360. MR 620744, DOI 10.1017/S0305004100058801
Similar Articles
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 282 (1984), 335-354
  • MSC: Primary 35J60; Secondary 35B32, 35B45, 58E07
  • DOI: https://doi.org/10.1090/S0002-9947-1984-0728716-3
  • MathSciNet review: 728716