Positive solutions of nonlinear elliptic equations—existence and nonexistence of solutions with radial symmetry in $L_{p}(\textbf {R}^{N})$
HTML articles powered by AMS MathViewer
- by J. F. Toland
- Trans. Amer. Math. Soc. 282 (1984), 335-354
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728716-3
- PDF | Request permission
Abstract:
It is shown that when $r$ is nonincreasing, radially symmetric, continuous and bounded below by a positive constant, the solution set of the nonlinear elliptic eigenvalue problem \[ - \Delta u = \lambda u + r{u^{1 + \sigma }},\qquad u > 0\qquad {\text {on}} {\mathbf {R}^N},\qquad u \to 0\qquad {\text {as}} {\text {|x|}} \to \infty \], contains a continuum $\mathcal {C}$ of nontrivial solutions which is unbounded in $\mathbf {R} \times {L_p}({\mathbf {R}^N})$ for all $p \geq 1$. Various estimates of the ${L_p}$ norm of $u$ are obtained which depend on the relative values of $\sigma$ and $p$, and the Pohozaev and Sobolev embedding constants.References
- C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal. 76 (1981), no. 1, 9–95. MR 629699, DOI 10.1007/BF00250799
- C. J. Amick and J. F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip—global theory of bifurcation and asymptotic bifurcation, Math. Ann. 262 (1983), no. 3, 313–342. MR 692860, DOI 10.1007/BF01456013
- H. Berestycki and P.-L. Lions, Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans $\textbf {R}^{N}$, J. Analyse Math. 38 (1980), 144–187 (French). MR 600785, DOI 10.1007/BF03033880
- H. Berestycki, P.-L. Lions, and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\textbf {R}^{N}$, Indiana Univ. Math. J. 30 (1981), no. 1, 141–157. MR 600039, DOI 10.1512/iumj.1981.30.30012
- Haïm Brézis, Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981) Res. Notes in Math., vol. 70, Pitman, Boston, Mass.-London, 1982, pp. 129–146. MR 670270
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\textbf {R}^{n}$, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402. MR 634248
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406 —, A priori bounds for positive solutions of nonlinear equations, Comm. Partial Differential Equations (1981), 883-901. S. I. Pohozaev, Eigenfunctions of the equations $\Delta u + \lambda \,f(u) = 0$, Soviet Math. Dokl. 5 (1965), 1408-1411.
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
- C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), no. 1, 169–192. MR 662670, DOI 10.1112/plms/s3-45.1.169 —, Bifurcation from the continuous spectrum in the ${L_2}$-theory of elliptic equations in ${\mathbf {R}^N}$, (Lectures at S.A.F.A. IV, Naples, 1980), Recent Methods in Nonlinear Analysis and Applications, Liguori, Naples, 1981.
- J. F. Toland, Global bifurcation for Neumann problems without eigenvalues, J. Differential Equations 44 (1982), no. 1, 82–110. MR 651688, DOI 10.1016/0022-0396(82)90026-2
- J. F. Toland, Solitary wave solutions for a model of the two-way propagation of water waves in a channel, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 343–360. MR 620744, DOI 10.1017/S0305004100058801
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 282 (1984), 335-354
- MSC: Primary 35J60; Secondary 35B32, 35B45, 58E07
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728716-3
- MathSciNet review: 728716