## Orthogonal polynomials on the sphere with octahedral symmetry

HTML articles powered by AMS MathViewer

- by Charles F. Dunkl
- Trans. Amer. Math. Soc.
**282**(1984), 555-575 - DOI: https://doi.org/10.1090/S0002-9947-1984-0732106-7
- PDF | Request permission

## Abstract:

For any finite reflection group $G$ acting on ${{\mathbf {R}}^N}$ there is a family of $G$-invariant measures ($({h^2}d\omega$, where $h$ is a certain product of linear functions whose zero-sets are the reflecting hyperplanes for $G$) on the unit sphere and an associated partial differential operator (${L_h}f: = \Delta (fh) - f\Delta h$; $\Delta$ is the Laplacian). Analogously to spherical harmonics, there is an orthogonal (with respect to ${h^2}d\omega$) decomposition of homogeneous polynomials, that is, if $p$ is of degree $n$ then \[ p(x) = \sum \limits _{j = 0}^{[n/2]} {|x{|^{2j}}{p_{n - 2j}}(x),} \] where ${L_h}{p_i} = 0$ and ${\operatorname {deg}}{p_i} = i$ for each $i$, but with the restriction that $p$ and ${p_i}$ must all be $G$-invariant. The main topic is the hyperoctahedral group with \[ h(x) = {({x_1}{x_2} \cdots {x_N})^\alpha }{\left ( {\prod \limits _{i < j} {(x_i^2 - x_j^2)} } \right )^\beta }.\] The special case $N = 2$ leads to Jacobi polynomials. A detailed study of the case $N = 3$ is made; an important result is the construction of a third-order differential operator that maps polynomials associated to $h$ with indices $(\alpha ,\beta )$ to those associated with $(\alpha + 2,\beta + 1)$.## References

- Richard Askey,
*Some basic hypergeometric extensions of integrals of Selberg and Andrews*, SIAM J. Math. Anal.**11**(1980), no. 6, 938–951. MR**595822**, DOI 10.1137/0511084 - H. S. M. Coxeter,
*Regular polytopes*, 3rd ed., Dover Publications, Inc., New York, 1973. MR**0370327** - Charles F. Dunkl,
*Cube group invariant spherical harmonics and Krawtchouk polynomials*, Math. Z.**177**(1981), no. 4, 561–577. MR**624233**, DOI 10.1007/BF01219088 - Tom Koornwinder,
*Two-variable analogues of the classical orthogonal polynomials*, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 435–495. MR**0402146** - Otto Laporte,
*Polyhedral harmonics*, Z. Naturforschung**3a**(1948), 447–456. MR**0031142** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR**553598** - M. L. Mehta,
*Random matrices and the statistical theory of energy levels*, Academic Press, New York-London, 1967. MR**0220494**
W. G. Morris II, - G. Prasad,
*Über das Gaußsche Verfahren für die Zerlegung einer ganzenhomogenen Funktion in Kugelfunktionen*, Math. Ann.**72**(1912), no. 3, 435–436 (German). MR**1511709**, DOI 10.1007/BF01456729 - Richard Rasala,
*The Rodrigues formula and polynomial differential operators*, J. Math. Anal. Appl.**84**(1981), no. 2, 443–482. MR**639676**, DOI 10.1016/0022-247X(81)90180-3 - Richard P. Stanley,
*Invariants of finite groups and their applications to combinatorics*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 3, 475–511. MR**526968**, DOI 10.1090/S0273-0979-1979-14597-X - Robert Steinberg,
*Invariants of finite reflection groups*, Canadian J. Math.**12**(1960), 616–618. MR**117285**, DOI 10.4153/CJM-1960-055-3
G. Szegö,

*Constant term identities for finite and affine root systems: Conjectures and theorems*, Ph. D. Thesis, Univ. of Wisconsin, Madison, 1982.

*Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959. B. L. van der Waerden,

*Algebra*. Vol. 1, 7th ed., Springer-Verlag, Berlin and New York, 1966.

## Bibliographic Information

- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**282**(1984), 555-575 - MSC: Primary 33A65; Secondary 33A45
- DOI: https://doi.org/10.1090/S0002-9947-1984-0732106-7
- MathSciNet review: 732106