On maximal rearrangement inequalities for the Fourier transform
HTML articles powered by AMS MathViewer
- by W. B. Jurkat and G. Sampson
- Trans. Amer. Math. Soc. 282 (1984), 625-643
- DOI: https://doi.org/10.1090/S0002-9947-1984-0732111-0
- PDF | Request permission
Abstract:
Suppose that $w$ is a measurable function on ${{\mathbf {R}}^n}$ and denote by $W = {w^ \ast }$ the decreasing rearrangement of $\left | w \right |$ (provided that it exists). We show that the $n$-dimensional Fourier transform $\hat f$ satisfies (1) \[ {\left \| {w\hat f} \right \|_q} \leqslant {\left \| {W{{(\hat f)}^ \ast }} \right \|_q} \leqslant C\left \| {W(t)\int _0^{1/t} {{f^ \ast }} } \right \|\quad (C\ {\text {absolute constant}}),\] if $1 < q < \infty$ and ${t^{2/q - 1}}W(t) \searrow$ for $t > 0$. We also show that (2) \[ {\left \| {w\hat f} \right \|_q} \geqslant {c_{n,q}}{\left \| {w(x)\int _{\left | v \right | \leqslant 1/\left | x \right |} {f(y)} dy} \right \|_q}\quad (f\ {\text {nonnegative),}}\] if $1 < q < \infty$ and $w$ is nonnegative and symmetrically decreasing. Inequality (2) implies that (1) is maximal in the sense that the left side reaches the right side if $f$ is nonnegative and symmetrically decreasing. Hence, (1) implies all other possible estimates in terms of $W$ and ${f^ \ast }$. The cases $q \ne 2$ of (1) can be derived from the case $q = 2$ (and same $f$) by a convexity principle which does not involve interpolation. The analogue of (1) for Fourier series is due to H. L. Montgomery if $q \geqslant 2$ (then the extra condition on $W$ is automatically satisfied).References
- Albert Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169. MR 417406, DOI 10.1007/BF02392144 R. M. Gabriel, A "star inequality" for harmonic functions, Proc. London Math. Soc. 34 (1932), 305-313. G. H. Hardy, Orders of infinity, the "infinitärcalcül" of Paul DuBois-Reymond, Cambridge Univ. Press, London and New York, 1910. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London and New York, 1934.
- W. B. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), no. 2, 257–270. MR 733899, DOI 10.1512/iumj.1984.33.33013
- J. E. Littlewood, On a theorem of Paley, J. London Math. Soc. 29 (1954), 387–395. MR 63473, DOI 10.1112/jlms/s1-29.4.387
- J. E. Littlewood, On the inequalities between functions $f$ and $f^{\ast }$, J. London Math. Soc. 35 (1960), 352–365. MR 130945, DOI 10.1112/jlms/s1-35.3.352
- Hugh L. Montgomery, A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, v, 29–34 (English, with French summary). MR 407517
- Benjamin Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), no. 2, 729–742. MR 688974, DOI 10.1090/S0002-9947-1983-0688974-X
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 282 (1984), 625-643
- MSC: Primary 42B10; Secondary 26D15
- DOI: https://doi.org/10.1090/S0002-9947-1984-0732111-0
- MathSciNet review: 732111