A nonlinear integral equation occurring in a singular free boundary problem
HTML articles powered by AMS MathViewer
- by Klaus Höllig and John A. Nohel
- Trans. Amer. Math. Soc. 283 (1984), 145-155
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735412-5
- PDF | Request permission
Abstract:
We study the Cauchy problem \[ \left \{ \begin {gathered} {u_t} = \phi {({u_x})_x},\qquad (x,t) \in {\mathbf {R}} \times {{\mathbf {R}}_ + }, \hfill \\ u( \cdot ,0) = f \hfill \\ \end {gathered} \right .\] with the piecewise linear constitutive function $\phi (\xi ) = {\xi _ + } = \max (0,\xi )$ and with smooth initial data $f$ which satisfy $xf’(x) \geqslant 0$, $x \in {\mathbf {R}}$, and $f''(0) > 0$. We prove that free boundary $s$, given by ${u_x}(s{(t)^ + },t) = 0$, is of the form \[ s(t) = - \kappa \sqrt t + o\left ( {\sqrt t } \right ),\qquad t \to {0^ + },\] where the constant $\kappa = 0.9034 \ldots$ is the (numerical) solution of a particular nonlinear equation. Moreover, we show that for any $\alpha \in (0,1/2)$, \[ \left | {\frac {{{d^2}}} {{d{t^2}}}f(s(t))} \right | = O({t^{\alpha - 1}}),\qquad t \to {0^ + }.\] The proof involves the analysis of a nonlinear singular integral equation.References
- P. Benilan, M. G. Crandall and A. Pazy, $M$-accretive operators (in preparation).
- Lawrence C. Evans, Application of nonlinear semigroup theory to certain partial differential equations, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 163–188. MR 513818
- A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. I, J. Math. Anal. Appl. 57 (1977), no. 3, 694–723. MR 487016, DOI 10.1016/0022-247X(77)90256-6
- A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. I, J. Math. Anal. Appl. 57 (1977), no. 3, 694–723. MR 487016, DOI 10.1016/0022-247X(77)90256-6
- Klaus Höllig, Existence of infinitely many solutions for a forward backward heat equation, Trans. Amer. Math. Soc. 278 (1983), no. 1, 299–316. MR 697076, DOI 10.1090/S0002-9947-1983-0697076-8 K. Höllig and J. A. Nohel, A diffusion equation with a nonmonotone constitutive function, Systems of Partial Differential Equations (J. M. Ball, ed.), Reidel, Dordrecht, 1983, pp. 409-422.
- D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 373–391. MR 440187
- David G. Schaeffer, A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations 20 (1976), no. 1, 266–269. MR 390499, DOI 10.1016/0022-0396(76)90106-6
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 145-155
- MSC: Primary 35R35; Secondary 35K55, 45G10
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735412-5
- MathSciNet review: 735412