Examples of unoriented area-minimizing surfaces
HTML articles powered by AMS MathViewer
- by Frank Morgan
- Trans. Amer. Math. Soc. 283 (1984), 225-237
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735418-6
- PDF | Request permission
Abstract:
A comprehensive study is made of constructions of area-minimizing flat chains modulo two. Many have singularities. For instance, any bounded, area-minimizing submanifold of ${{\mathbf {R}}^n}$ occurs as the singular set of some area-minimizing flat chain modulo two in some ${{\mathbf {R}}^N}$.References
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- William K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975), 418–446. MR 397520, DOI 10.2307/1970934 F. J. Almgren, Jr., How to connect minimal surfaces by bridges, in preparation. (Cf. Abstracts Amer. Math. Soc. 3 (1980), 775 B7, p. 225.) —, ${\mathbf {Q}}$ valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two (preprint).
- Jiri Dadok and Reese Harvey, Calibrations on $\textbf {R}^{6}$, Duke Math. J. 50 (1983), no. 4, 1231–1243. MR 726326, DOI 10.1215/S0012-7094-83-05053-6
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 0093649
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351–407. MR 348598, DOI 10.1512/iumj.1974.24.24031
- Herbert Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767–771. MR 260981, DOI 10.1090/S0002-9904-1970-12542-3
- Herbert Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43–67. MR 168727, DOI 10.1090/S0002-9947-1965-0168727-0
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Wendell H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160–186. MR 185084, DOI 10.1090/S0002-9947-1966-0185084-5
- Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69–90. MR 157263, DOI 10.1007/BF02849427
- Robert M. Hardt, On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand, Comm. Partial Differential Equations 2 (1977), no. 12, 1163–1232. MR 513682, DOI 10.1080/03605307708820058
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726 Reese Harvey and Frank Morgan, The comass ball in ${ \wedge ^3}{{\mathbf {R}}^6}$, in preparation.
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- H. Blaine Lawson Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc. 173 (1972), 231–249. MR 308905, DOI 10.1090/S0002-9947-1972-0308905-4
- Frank Morgan, Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 1, 37–46. MR 743207, DOI 10.1007/BF02844410 —, The exterior algebra ${ \wedge ^k}{{\mathbf {R}}^n}$ and area minimization, Linear Algebra Appl. (to appear).
- Frank Morgan, On the singular structure of three-dimensional, area-minimizing surfaces, Trans. Amer. Math. Soc. 276 (1983), no. 1, 137–143. MR 684498, DOI 10.1090/S0002-9947-1983-0684498-4
- Frank Morgan, A smooth curve in $R^{4}$ bounding a continuum of area minimizing surfaces, Duke Math. J. 43 (1976), no. 4, 867–870. MR 415475
- Robert Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092–1120. MR 276875, DOI 10.1090/S0002-9904-1969-12357-8 Brian White, The space of $m$-dimensional surfaces that are stationary for a parametric elliptic integrand (preprint).
- Brian White, The structure of minimizing hypersurfaces mod $4$, Invent. Math. 53 (1979), no. 1, 45–58. MR 538683, DOI 10.1007/BF01403190
- William P. Ziemer, Integral currents $\textrm {mod}$ $2$, Trans. Amer. Math. Soc. 105 (1962), 496–524. MR 150267, DOI 10.1090/S0002-9947-1962-0150267-3
- Herbert Federer, A minimizing property of extremal submanifolds, Arch. Rational Mech. Anal. 59 (1975), no. 3, 207–217. MR 388226, DOI 10.1007/BF00251600
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 225-237
- MSC: Primary 49F22; Secondary 53C65
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735418-6
- MathSciNet review: 735418