On the diagonal of an operator
HTML articles powered by AMS MathViewer
- by Peng Fan
- Trans. Amer. Math. Soc. 283 (1984), 239-251
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735419-8
- PDF | Request permission
Abstract:
Characterizations of zero-diagonal operators (i.e., operators that have a diagonal whose entries consist entirely of zeros) and the norm-closure of these operators are obtained. Also included are new characterizations of trace class operators, self-commutators of bounded operators, and others.References
- J. Anderson, Derivations, commutators and the essential numerical range, Ph.D. Thesis, Indiana University, 1971.
- Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112–127. MR 178354, DOI 10.2307/1970564
- Peng Fan and Che Kao Fong, Which operators are the self-commutators of compact operators?, Proc. Amer. Math. Soc. 80 (1980), no. 1, 58–60. MR 574508, DOI 10.1090/S0002-9939-1980-0574508-X
- P. A. Fillmore, On similarity and the diagonal of a matrix, Amer. Math. Monthly 76 (1969), 167–169. MR 237526, DOI 10.2307/2317264
- P. A. Fillmore, C. K. Fong, and A. R. Sourour, Real parts of quasinilpotent operators, Proc. Edinburgh Math. Soc. (2) 22 (1979), no. 3, 263–269. MR 560989, DOI 10.1017/S0013091500016436
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- Paul R. Halmos, Finite-dimensional vector spaces, The University Series in Undergraduate Mathematics, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958. 2nd ed. MR 0089819
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Heydar Radjavi, Structure of $A^{\ast } A-AA^{\ast }$, J. Math. Mech. 16 (1966), 19–26. MR 0203482, DOI 10.1512/iumj.1967.16.16002
- J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. (2) 20 (1968), 417–424. MR 243352, DOI 10.2748/tmj/1178243070
- Quentin F. Stout, Schur products of operators and the essential numerical range, Trans. Amer. Math. Soc. 264 (1981), no. 1, 39–47. MR 597865, DOI 10.1090/S0002-9947-1981-0597865-2
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 283 (1984), 239-251
- MSC: Primary 47A65; Secondary 47Bxx
- DOI: https://doi.org/10.1090/S0002-9947-1984-0735419-8
- MathSciNet review: 735419